1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
"""Tests for module regularization path"""
# Author: Haoran Wu <haoran.wu@univ-ubs.fr>
#
# License: MIT License
import numpy as np
import ot
def test_fully_relaxed_path():
n_source = 50 # nb source samples (gaussian)
n_target = 40 # nb target samples (gaussian)
mu = np.array([0, 0])
cov = np.array([[1, 0], [0, 2]])
rng = np.random.RandomState(0)
xs = ot.datasets.make_2D_samples_gauss(n_source, mu, cov, random_state=rng)
xt = ot.datasets.make_2D_samples_gauss(n_target, mu, cov, random_state=rng)
# source and target distributions
a = ot.utils.unif(n_source)
b = ot.utils.unif(n_target)
# loss matrix
M = ot.dist(xs, xt)
M /= M.max()
t, _, _ = ot.regpath.regularization_path(a, b, M, reg=1e-8, semi_relaxed=False)
G = t.reshape((n_source, n_target))
np.testing.assert_allclose(a, G.sum(1), atol=1e-05)
np.testing.assert_allclose(b, G.sum(0), atol=1e-05)
def test_semi_relaxed_path():
n_source = 50 # nb source samples (gaussian)
n_target = 40 # nb target samples (gaussian)
mu = np.array([0, 0])
cov = np.array([[1, 0], [0, 2]])
rng = np.random.RandomState(0)
xs = ot.datasets.make_2D_samples_gauss(n_source, mu, cov, random_state=rng)
xt = ot.datasets.make_2D_samples_gauss(n_target, mu, cov, random_state=rng)
# source and target distributions
a = ot.utils.unif(n_source)
b = ot.utils.unif(n_target)
# loss matrix
M = ot.dist(xs, xt)
M /= M.max()
t, _, _ = ot.regpath.regularization_path(a, b, M, reg=1e-8, semi_relaxed=True)
G = t.reshape((n_source, n_target))
np.testing.assert_allclose(a, G.sum(1), atol=1e-05)
np.testing.assert_allclose(b, G.sum(0), atol=1e-10)
|