1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
import json
import tarfile
import tempfile
from io import BufferedReader, TextIOWrapper
from os.path import basename, splitext
from pathlib import Path
import pytest
from Bio.PDB.PDBParser import PDBParser
from Bio.PDB.Residue import Residue
from Bio.PDB.Structure import Structure
from prodigy_prot.modules.parsers import validate_structure
from prodigy_prot.modules.prodigy import (
Prodigy,
analyse_contacts,
analyse_nis,
calculate_ic,
)
from . import TEST_DATA
@pytest.fixture
def input_pdb_structure():
input_f = Path(TEST_DATA, "2oob.pdb")
parser = PDBParser()
return parser.get_structure(input_f.stem, input_f)
@pytest.fixture
def compressed_dataset_f():
return Path(TEST_DATA, "dataset.tgz")
@pytest.fixture
def expected_dataset_json():
return Path(TEST_DATA, "dataset.json")
@pytest.fixture
def prodigy_class(input_pdb_structure):
yield Prodigy(struct_obj=input_pdb_structure)
def test_calculate_ic(input_pdb_structure):
result = calculate_ic(struct=input_pdb_structure, d_cutoff=5.5)
assert len(result) == 78
first_hit: tuple[Residue, Residue] = result[0]
assert first_hit[0].get_resname() == "ASN"
assert first_hit[1].get_resname() == "LYS"
def test_calculate_ic_with_selection(input_pdb_structure):
result = calculate_ic(
struct=input_pdb_structure, d_cutoff=5.5, selection={"A": 0, "B": 1}
)
assert len(result) == 78
first_hit: tuple[Residue, Residue] = result[0]
assert first_hit[0].get_resname() == "ASN"
assert first_hit[1].get_resname() == "LYS"
def test_analyse_contacts(input_pdb_structure):
res_a = input_pdb_structure[0]["A"][(" ", 931, " ")]
res_b = input_pdb_structure[0]["B"][(" ", 6, " ")]
contact = (res_a, res_b)
test_input = [contact]
result = analyse_contacts(test_input)
expected_output = {
"AA": 0.0,
"PP": 0.0,
"CC": 0.0,
"AP": 0.0,
"CP": 1.0,
"AC": 0.0,
}
assert result == expected_output
def test_analyse_nis():
test_input = {("B", "ARG", "72"): 0.9}
apolar, polar, charged = analyse_nis(test_input)
assert apolar == 0.0
assert polar == 100.0
assert charged == 0.0
def test_prodigy_predict(prodigy_class):
prodigy_class.predict()
assert prodigy_class.nis_a == pytest.approx(35.5, abs=1.0)
assert prodigy_class.nis_c == pytest.approx(38.0, abs=1.0)
assert prodigy_class.ba_val == pytest.approx(-6.2, abs=1.0)
# This is the actual prediction
assert prodigy_class.kd_val == pytest.approx(2.7e-5, abs=1e-6)
def test_prodigy_as_dict(prodigy_class):
result = prodigy_class.as_dict()
assert isinstance(result, dict)
assert len(result) == 14
def test_prodigy_print_prediction(prodigy_class):
outfile = tempfile.NamedTemporaryFile(delete=False)
assert Path(outfile.name).stat().st_size == 0
prodigy_class.print_prediction(outfile.name)
assert Path(outfile.name).stat().st_size != 0
Path(outfile.name).unlink()
def test_prodigy_print_prediction_quiet(prodigy_class):
outfile = tempfile.NamedTemporaryFile(delete=False)
assert Path(outfile.name).stat().st_size == 0
prodigy_class.print_prediction(outfile.name, True)
assert Path(outfile.name).stat().st_size != 0
Path(outfile.name).unlink()
def test_prodigy_print_contacts(input_pdb_structure, prodigy_class):
res_a = input_pdb_structure[0]["A"][(" ", 931, " ")]
res_b = input_pdb_structure[0]["B"][(" ", 6, " ")]
prodigy_class.ic_network = [(res_a, res_b)]
outfile = tempfile.NamedTemporaryFile(delete=False)
assert Path(outfile.name).stat().st_size == 0
prodigy_class.print_contacts(outfile.name)
assert Path(outfile.name).stat().st_size != 0
Path(outfile.name).unlink()
def test_print_pymol_script(input_pdb_structure, prodigy_class):
res_a = input_pdb_structure[0]["A"][(" ", 931, " ")]
res_b = input_pdb_structure[0]["B"][(" ", 6, " ")]
prodigy_class.ic_network = [(res_a, res_b)]
outfile = tempfile.NamedTemporaryFile(delete=False)
assert Path(outfile.name).stat().st_size == 0
prodigy_class.print_pymol_script(outfile.name)
assert Path(outfile.name).stat().st_size != 0
Path(outfile.name).unlink()
@pytest.mark.integration
def test_dataset_prediction(compressed_dataset_f, expected_dataset_json):
"""
Test method to compare prediction for 80 dataset cases with
expected values.
"""
# load expected data from json
with open(expected_dataset_json) as fh:
expected_data = json.load(fh)
# load dataset PDBs
dataset = tarfile.open(compressed_dataset_f)
parser = PDBParser(QUIET=True)
keys_equal = ["AA", "PP", "CC", "AP", "CP", "AC"]
diffs = {"ba_val": [], "nis_a": [], "nis_c": []}
# run prodigy for each dataset in the PDB
for entry in dataset:
s_name, s_ext = splitext(basename(entry.name))
# skip system files in archive
if not s_name.isalnum() or s_ext != ".pdb":
continue
handle = dataset.extractfile(entry)
# Wrap filehandle to ensure string file handle in Python 3
handle = TextIOWrapper(BufferedReader(handle)) # type: ignore
parsed_structure = parser.get_structure(s_name, handle)
assert isinstance(parsed_structure, Structure)
s = validate_structure(parsed_structure, selection=["A", "B"])
# Test for structure object
assert isinstance(s, Structure)
# run prediction and retrieve result dict
prod = Prodigy(s, selection=["A", "B"])
prod.predict()
results = prod.as_dict()
# check for equality of prdicted interface residues
for k in keys_equal:
observed_value = results[k]
expected_value = expected_data[s_name][k]
assert observed_value == pytest.approx(expected_value)
# check that NIS and binding afinity values are within 2% of
# expected values and add diffs for summary
for k in diffs.keys():
delta = abs(results[k] / expected_data[s_name][k] - 1)
# assume a difference of less then 2%
assert delta == pytest.approx(0, abs=0.02)
diffs[k].append(delta)
|