1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
from collections import namedtuple
try:
from collections.abc import Iterable
except ImportError:
from collections import Iterable
from functools import partial
from threading import local
from .promise import Promise, async_instance, get_default_scheduler
if False:
from typing import (
Any,
List,
Sized,
Callable,
Optional,
Tuple,
Union,
Iterator,
Hashable,
) # flake8: noqa
def get_chunks(iterable_obj, chunk_size=1):
# type: (List[Loader], int) -> Iterator
chunk_size = max(1, chunk_size)
return (
iterable_obj[i : i + chunk_size]
for i in range(0, len(iterable_obj), chunk_size)
)
Loader = namedtuple("Loader", "key,resolve,reject")
class DataLoader(local):
batch = True
max_batch_size = None # type: int
cache = True
def __init__(
self,
batch_load_fn=None, # type: Callable
batch=None, # type: Optional[Any]
max_batch_size=None, # type: Optional[int]
cache=None, # type: Optional[Any]
get_cache_key=None, # type: Optional[Any]
cache_map=None, # type: Optional[Any]
scheduler=None, # type: Optional[Any]
):
# type: (...) -> None
if batch_load_fn is not None:
self.batch_load_fn = batch_load_fn
if not callable(self.batch_load_fn):
raise TypeError(
(
"DataLoader must be have a batch_load_fn which accepts "
"List<key> and returns Promise<List<value>>, but got: {}."
).format(batch_load_fn)
)
if batch is not None:
self.batch = batch
if max_batch_size is not None:
self.max_batch_size = max_batch_size
if cache is not None:
self.cache = cache
self.get_cache_key = get_cache_key or (lambda x: x)
self._promise_cache = cache_map or {}
self._queue = [] # type: List[Loader]
self._scheduler = scheduler
def load(self, key=None):
# type: (Hashable) -> Promise
"""
Loads a key, returning a `Promise` for the value represented by that key.
"""
if key is None:
raise TypeError(
(
"The loader.load() function must be called with a value,"
+ "but got: {}."
).format(key)
)
cache_key = self.get_cache_key(key)
# If caching and there is a cache-hit, return cached Promise.
if self.cache:
cached_promise = self._promise_cache.get(cache_key)
if cached_promise:
return cached_promise
# Otherwise, produce a new Promise for this value.
promise = Promise(partial(self.do_resolve_reject, key)) # type: ignore
# If caching, cache this promise.
if self.cache:
self._promise_cache[cache_key] = promise
return promise
def do_resolve_reject(self, key, resolve, reject):
# type: (Hashable, Callable, Callable) -> None
# Enqueue this Promise to be dispatched.
self._queue.append(Loader(key=key, resolve=resolve, reject=reject))
# Determine if a dispatch of this queue should be scheduled.
# A single dispatch should be scheduled per queue at the time when the
# queue changes from "empty" to "full".
if len(self._queue) == 1:
if self.batch:
# If batching, schedule a task to dispatch the queue.
enqueue_post_promise_job(partial(dispatch_queue, self), self._scheduler)
else:
# Otherwise dispatch the (queue of one) immediately.
dispatch_queue(self)
def load_many(self, keys):
# type: (Iterable[Hashable]) -> Promise
"""
Loads multiple keys, promising an array of values
>>> a, b = await my_loader.load_many([ 'a', 'b' ])
This is equivalent to the more verbose:
>>> a, b = await Promise.all([
>>> my_loader.load('a'),
>>> my_loader.load('b')
>>> ])
"""
if not isinstance(keys, Iterable):
raise TypeError(
(
"The loader.loadMany() function must be called with Array<key> "
+ "but got: {}."
).format(keys)
)
return Promise.all([self.load(key) for key in keys])
def clear(self, key):
# type: (Hashable) -> DataLoader
"""
Clears the value at `key` from the cache, if it exists. Returns itself for
method chaining.
"""
cache_key = self.get_cache_key(key)
self._promise_cache.pop(cache_key, None)
return self
def clear_all(self):
# type: () -> DataLoader
"""
Clears the entire cache. To be used when some event results in unknown
invalidations across this particular `DataLoader`. Returns itself for
method chaining.
"""
self._promise_cache.clear()
return self
def prime(self, key, value):
# type: (Hashable, Any) -> DataLoader
"""
Adds the provied key and value to the cache. If the key already exists, no
change is made. Returns itself for method chaining.
"""
cache_key = self.get_cache_key(key)
# Only add the key if it does not already exist.
if cache_key not in self._promise_cache:
# Cache a rejected promise if the value is an Error, in order to match
# the behavior of load(key).
if isinstance(value, Exception):
promise = Promise.reject(value)
else:
promise = Promise.resolve(value)
self._promise_cache[cache_key] = promise
return self
# Private: Enqueue a Job to be executed after all "PromiseJobs" Jobs.
#
# ES6 JavaScript uses the concepts Job and JobQueue to schedule work to occur
# after the current execution context has completed:
# http://www.ecma-international.org/ecma-262/6.0/#sec-jobs-and-job-queues
#
# Node.js uses the `process.nextTick` mechanism to implement the concept of a
# Job, maintaining a global FIFO JobQueue for all Jobs, which is flushed after
# the current call stack ends.
#
# When calling `then` on a Promise, it enqueues a Job on a specific
# "PromiseJobs" JobQueue which is flushed in Node as a single Job on the
# global JobQueue.
#
# DataLoader batches all loads which occur in a single frame of execution, but
# should include in the batch all loads which occur during the flushing of the
# "PromiseJobs" JobQueue after that same execution frame.
#
# In order to avoid the DataLoader dispatch Job occuring before "PromiseJobs",
# A Promise Job is created with the sole purpose of enqueuing a global Job,
# ensuring that it always occurs after "PromiseJobs" ends.
# Private: cached resolved Promise instance
cache = local()
def enqueue_post_promise_job(fn, scheduler):
# type: (Callable, Any) -> None
global cache
if not hasattr(cache, 'resolved_promise'):
cache.resolved_promise = Promise.resolve(None)
if not scheduler:
scheduler = get_default_scheduler()
def on_promise_resolve(v):
# type: (Any) -> None
async_instance.invoke(fn, scheduler)
cache.resolved_promise.then(on_promise_resolve)
def dispatch_queue(loader):
# type: (DataLoader) -> None
"""
Given the current state of a Loader instance, perform a batch load
from its current queue.
"""
# Take the current loader queue, replacing it with an empty queue.
queue = loader._queue
loader._queue = []
# If a maxBatchSize was provided and the queue is longer, then segment the
# queue into multiple batches, otherwise treat the queue as a single batch.
max_batch_size = loader.max_batch_size
if max_batch_size and max_batch_size < len(queue):
chunks = get_chunks(queue, max_batch_size)
for chunk in chunks:
dispatch_queue_batch(loader, chunk)
else:
dispatch_queue_batch(loader, queue)
def dispatch_queue_batch(loader, queue):
# type: (DataLoader, List[Loader]) -> None
# Collect all keys to be loaded in this dispatch
keys = [l.key for l in queue]
# Call the provided batch_load_fn for this loader with the loader queue's keys.
try:
batch_promise = loader.batch_load_fn(keys)
except Exception as e:
failed_dispatch(loader, queue, e)
return None
# Assert the expected response from batch_load_fn
if not batch_promise or not isinstance(batch_promise, Promise):
failed_dispatch(
loader,
queue,
TypeError(
(
"DataLoader must be constructed with a function which accepts "
"Array<key> and returns Promise<Array<value>>, but the function did "
"not return a Promise: {}."
).format(batch_promise)
),
)
return None
def batch_promise_resolved(values):
# type: (Sized) -> None
# Assert the expected resolution from batchLoadFn.
if not isinstance(values, Iterable):
raise TypeError(
(
"DataLoader must be constructed with a function which accepts "
"Array<key> and returns Promise<Array<value>>, but the function did "
"not return a Promise of an Array: {}."
).format(values)
)
if len(values) != len(keys):
raise TypeError(
(
"DataLoader must be constructed with a function which accepts "
"Array<key> and returns Promise<Array<value>>, but the function did "
"not return a Promise of an Array of the same length as the Array "
"of keys."
"\n\nKeys:\n{}"
"\n\nValues:\n{}"
).format(keys, values)
)
# Step through the values, resolving or rejecting each Promise in the
# loaded queue.
for l, value in zip(queue, values):
if isinstance(value, Exception):
l.reject(value)
else:
l.resolve(value)
batch_promise.then(batch_promise_resolved).catch(
partial(failed_dispatch, loader, queue)
)
def failed_dispatch(loader, queue, error):
# type: (DataLoader, Iterable[Loader], Exception) -> None
"""
Do not cache individual loads if the entire batch dispatch fails,
but still reject each request so they do not hang.
"""
for l in queue:
loader.clear(l.key)
l.reject(error)
|