

Open Source In Optimisation

Dr. Stuart Mitchell
Department of Engineering Science

University of Auckland
New Zealand

s.mitchell@auckland.ac.nz

The
University

of Auckland

Contents of presentation

What is Open Source

The open source future for OR

PuLP

Genrating a Yield Frontier with PuLP

Traveling tournement problem with PuLP

Further PuLP examples

What is open source

• A term used to describe software
distributed in source under licenses
guaranteeing anybody rights to freely use,
modify, and redistribute the code.

• Examples of Open Source software
include:
– The Linux Kernel
– The Apache Web Server
– The R Project for Statistical Computing
– Open Cmiss

Statistical software nets
technology award

• Otago Daily Times 11 Nov 2008

Ross Ihaka has won New Zealand's top award for technology
achievements, the 2008 Pickering Medal.
Dr Ihaka, of Auckland University, gained his honour for a package of
computer programmes.
The medal was one of series awarded by the national science
academy, the Royal Society, before 380 of the nation's senior
scientists at Te Papa in Wellington,
Dr Ihaka's software for statisticians, called R, can be downloaded free
and has had huge uptake by universities, industry and government.
Readily customised for different applications, it has proved invaluable
for major "data crunching" tasks such as processing genomic
information.

Statistical software nets technology
award

• The package and the paper introducing it
have been cited over 1700 times in
research papers: the highest 'hit-rate' for
publications in the mathematical sciences
over the past 10 years, worldwide, and it is
now disseminated from over 75 internet
sites in 30 countries.

The open source future for OR
• Presently the Computational OR tools

used, taught within this department, are
closed source.
– Excel /Storm
– AMPL, GAMS
– CPLEX, EXPRESS, ZIP

• Students can not afford commercial
licences of this software

• Students cannot see how this software
works.

The open source future for OR

• These tools follow the 'Cathedral' style of
development.
– ... software .. built like cathedrals, carefully

crafted by individual wizards or small bands of
mages working in splendid isolation, with no
beta to be released before its time

Eric S. Raymond

• They are also typically expensive for non-
academic use

The open source future for OR

• Open source tools, for instance the Linux
Kernel, can follow a 'Bazaar' development
model
– a great babbling bazaar of differing agendas

and approaches out of which a coherent and
stable system could seemingly emerge only by
a succession of miracles

Eric S Raymond

The open source future for OR

• What are the attributes of the Bazaar?
– Publicly available code that is released and

updated often
– The ability for anyone to make improvements
– A community that pushes for constant

improvement and code quality

The open source future for OR

• What are the attributes of the Bazaar?
– Publication:

• Publicly available code that is released and updated
often

– Collaboration
• The ability for anyone to make improvements

– Peer Review:
• A community that pushes for constant improvement

and code quality

The open source future for OR

• Open source therefore naturally
complements the research and publication
process.

• From the Coin-OR website
Why for OR? Consider the following scenario. You read about an
optimization algorithm in the literature and you get an idea on how to improve
it. Today, testing your new idea typically requires re-implementing (and re-
debugging and re-testing) the original algorithm. Often, clever implementation
details aren't published. It can be difficult to replicate reported performance.
Now imagine the scenario if the original algorithm was publicly available in a
community repository. Weeks of re-implementing would no longer be
required. You would simply check out a copy of it for yourself and modify it.

Imagine the productivity gains from software reuse!

The open source future for OR

• Outcomes for students
– Ability to access free (no cost) software to

implement their own solutions once they
graduate

– Ability to access free (open) source code to
see how the algorithms are implemented.

• Imagine the difference to 391??

– The ability to improve the software they use.

PuLP

• PuLP is a python module that allows the
easy expression of Mathematical Programs

• PuLP is built to interface with separate
solvers

• PuLP is similar in style to:
– AMPL
– GAMS
– OPL
– LINGO
– FLOPC++ etc.

PuLP

• Why Python?
– Core Python syntax leads to the concise

statement of MP's
– Python is a scripting language so no

compilation is needed and the code is platform
independent

– Python interfaces easily with external solvers
that do the heavy lifting

– Python comes with 'batteries included'
• The Python standard library is huge

PuLP

• Written initially by J. S. Roy
• Now maintained by S. A. Mitchell
• It is available at

http://pulp-or.google-code.com
• Now available for Windows and Linux

http://pulp-or.google-code.com/

Total Volume
of Pulp logs

Total Volume
of Saw logs

40m3

20m3

Lines joining
extreme points
represent the
Yield Frontier

Generating a Yield Frontier

Generating a Yield Frontier

• Using pulp we formulate the bucking
problem (with a single objective) as a set
packing problem by log section.

lp = LpProblem("Bucking Model", LpMaximize)
#set up the logvolume variables
logvol=LpVariable.dicts("LogVolume(\"%s\")",logtypes,0)
#objective
lp+=lpSum([l.price * logvol[l] for l in logtypes]), "Revenue“
#setup the arc variables
x=LpVariable.dict("x(%s)",f_logs,0,1,LpInteger)
#set up a section set partitioning problem
count = 0
for s in stems:
 slogs = fs_logs[s]
 for i,sec in enumerate(s.sections):
 lp +=(lpSum((x[log] for log in slogs
 if log.startl <= sec.start
 if log.endl > sec.start)) <= 1
 , "Stem_Section(\"%s\",%i)" % (str(s),i))
 count += 1
#add the constraints that link the log volumes
for lt in logtypes:
 lp +=(lpSum((log.volume*x[log]
 for log in fl_logs[lt])) - logvol[lt] == 0
 , "Logtype_volume(\"%s\")" % str(lt))

Generating a Yield Frontier Using Pulp

• We then iteratively solve the problem to find all
extreme supported solutions on the Yield
Frontier

• Equivalent to projecting the problem into the log
volume space

• I added a module to PuLP that implements
projection using Iterative Hull Methods (Lassez,
Lassez 1992)

>>> pprob, ppoints = polytope.project(lp, totalvars)

Find Yield Frontier for the Dataset

(838, 0)
(0, 0)

(0, 650)
(176, 649)

(235, 611)

(737,145)

(823, 35)

Find Yield Frontier for a Single Stem

* Total projected *\
Minimize
OBJ: __dummy
Subject To
_C1: DomSaw + 1.11154598826 ex <= 2669.27592955
_C2: DomSaw + 1.34653465347 ex <= 3118.57425743
_C3: 1.00863930886 DomSaw + ex <= 2522.60691145
Bounds
__dummy = 0
End

Travelling tournament problem with PuLP

• This problem models the allocation of
teams to Home and Away games in a
tournament

• A full problem description and datasets are
found at Michael Trick's page

• http://mat.tepper.cmu.edu/TOURN/

Travelling tournament problem with PuLP

• At IFORS 2008 M. Trick presented an
approach to finding lower bounds to this
problem using combinatorial benders cuts

• That evening I implemented his algorithm
using PuLP

• Along the way I also added Powerset,
Combination and Permutation operators to
PuLP

• lp = LpProblem("Travelling tournement Master", LpMinimize)
#create variables
triplist = [Trip(t1,p) for t1 in teams
 for p in
 allpermutations([t for t in
 teams if t !=t1] ,k)
 if p[0] <= p[-1]]
tripvars = LpVariable.dict("mastervar ",triplist,0,1,LpInteger)
#objective
lp += lpSum([t.cost()*tripvars[t]
 for t in triplist])
#construct constraints to ensure that all teams visit each other
 for t1 in teams:
 for t2 in teams:
 if t1 != t2:
 lp += lpSum([tripvars[t] for t in triplist
 if t.team == t1
 if t2 in a.awayteams]) == 1, \
 "Team_%s_Visits_%s"%(t1,t2)

Further examples

• The 392 course has been converted from
AMPL to PuLP
http://130.216.209.237/engsci392/pulp/OptimisationWithPuLP

• There you can see a number of different
ways to construct problems

• Note that new language features can be
added very easily only needing approval
from the BDFL

http://130.216.209.237/engsci392/pulp/OptimisationWithPuLP

	Yield Frontier Analysis of Forestry Standing Inventory
	Contents of presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Generating a Yield Frontier Using Pulp
	Slide 18
	Slide 19
	Find Yield Frontier for the Dataset
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

