File: WhiskasModel1.py

package info (click to toggle)
python-pulp 1.6.0%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 14,508 kB
  • sloc: python: 6,003; sh: 36; makefile: 25
file content (41 lines) | stat: -rw-r--r-- 1,370 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
The Simplified Whiskas Model Python Formulation for the PuLP Modeller

Authors: Antony Phillips, Dr Stuart Mitchell  2007
"""

# Import PuLP modeler functions
from pulp import *

# Create the 'prob' variable to contain the problem data
prob = LpProblem("The Whiskas Problem",LpMinimize)

# The 2 variables Beef and Chicken are created with a lower limit of zero
x1=LpVariable("ChickenPercent",0,None,LpInteger)
x2=LpVariable("BeefPercent",0)

# The objective function is added to 'prob' first
prob += 0.013*x1 + 0.008*x2, "Total Cost of Ingredients per can"

# The five constraints are entered
prob += x1 + x2 == 100, "PercentagesSum"
prob += 0.100*x1 + 0.200*x2 >= 8.0, "ProteinRequirement"
prob += 0.080*x1 + 0.100*x2 >= 6.0, "FatRequirement"
prob += 0.001*x1 + 0.005*x2 <= 2.0, "FibreRequirement"
prob += 0.002*x1 + 0.005*x2 <= 0.4, "SaltRequirement"

# The problem data is written to an .lp file
prob.writeLP("WhiskasModel.lp")

# The problem is solved using PuLP's choice of Solver
prob.solve()

# The status of the solution is printed to the screen
print("Status:", LpStatus[prob.status])

# Each of the variables is printed with it's resolved optimum value
for v in prob.variables():
    print(v.name, "=", v.varValue)
    
# The optimised objective function value is printed to the screen
print("Total Cost of Ingredients per can = ", value(prob.objective))