File: CGcolumnwise.py

package info (click to toggle)
python-pulp 1.6.0%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 14,596 kB
  • sloc: python: 6,006; sh: 12; makefile: 5
file content (143 lines) | stat: -rw-r--r-- 4,581 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
Columnwise Column Generation Functions

Authors: Antony Phillips,  Dr Stuart Mitchell  2008
"""

# Import PuLP modeler functions
from pulp import *

class Pattern:
    """
    Information on a specific pattern in the SpongeRoll Problem
    """
    cost = 1
    trimValue = 0.04
    totalRollLength = 20
    lenOpts = ["5", "7", "9"]
    numPatterns = 0

    def __init__(self, name, lengths = None):
        self.name = name
        self.lengthsdict = dict(zip(self.lenOpts,lengths))
        Pattern.numPatterns += 1

    def __str__(self):
        return self.name

    def trim(self):
        return Pattern.totalRollLength - sum([int(i)*int(self.lengthsdict[i]) for i in self.lengthsdict])

def createMaster():

    rollData = {#Length Demand SalePrice
              "5":   [150,   0.25],
              "7":   [200,   0.33],
              "9":   [300,   0.40]}

    (rollDemand,surplusPrice) = splitDict(rollData)

    # The variable 'prob' is created
    prob = LpProblem("MasterSpongeRollProblem",LpMinimize)

    # The variable 'obj' is created and set as the LP's objective function
    obj = LpConstraintVar("Obj")
    prob.setObjective(obj)

    # The constraints are initialised and added to prob
    constraints = {}
    for l in Pattern.lenOpts:
        constraints[l]= LpConstraintVar("Min" + str(l), LpConstraintGE, rollDemand[l])
        prob += constraints[l]

    # The surplus variables are created
    surplusVars = []
    for i in Pattern.lenOpts:
        surplusVars += [LpVariable("Surplus "+ i,0,None,LpContinuous, -surplusPrice[i] * obj - constraints[i])]

    return prob,obj,constraints

def addPatterns(obj,constraints,newPatterns):

    # A list called Patterns is created to contain all the Pattern class
    # objects created in this function call
    Patterns = []
    for i in newPatterns:

        # The new patterns are checked to see that their length does not exceed
        # the total roll length
        lsum = 0
        for j,k in zip(i,Pattern.lenOpts):
            lsum += j * int(k)
        if lsum > Pattern.totalRollLength:
            raise "Length Options too large for Roll"

        # The number of rolls of each length in each new pattern is printed
        print "P"+str(Pattern.numPatterns),"=",i

        # The patterns are instantiated as Pattern objects
        Patterns += [Pattern("P" + str(Pattern.numPatterns),i)]

    # The pattern variables are created
    pattVars = []
    for i in Patterns:
        pattVars += [LpVariable("Pattern "+i.name,0,None,LpContinuous, (i.cost - Pattern.trimValue*i.trim()) * obj\
         + lpSum([constraints[l]*i.lengthsdict[l] for l in Pattern.lenOpts]))]

def masterSolve(prob,relax = True):

    # Unrelaxes the Integer Constraint
    if not relax:
        for v in prob.variables():
            v.cat = LpInteger

    # The problem is solved and rounded
    prob.solve(PULP_CBC_CMD())
    prob.roundSolution()

    if relax:
        # A dictionary of dual variable values is returned
        duals = {}
        for i,name in zip(Pattern.lenOpts,["Min5","Min7","Min9"]):
            duals[i] = prob.constraints[name].pi
        return duals
    else:
        # A dictionary of variable values and the objective value are returned
        varsdict = {}
        for v in prob.variables():
            varsdict[v.name] = v.varValue

        return value(prob.objective), varsdict

def subSolve(duals):

    # The variable 'prob' is created
    prob = LpProblem("SubProb",LpMinimize)

    # The problem variables are created
    vars = LpVariable.dicts("Roll Length", Pattern.lenOpts, 0, None, LpInteger)

    trim = LpVariable("Trim", 0 ,None,LpInteger)

    # The objective function is entered: the reduced cost of a new pattern
    prob += (Pattern.cost - Pattern.trimValue*trim) - lpSum([vars[i]*duals[i] for i in Pattern.lenOpts]), "Objective"

    # The conservation of length constraint is entered
    prob += lpSum([vars[i]*int(i) for i in Pattern.lenOpts]) + trim == Pattern.totalRollLength, "lengthEquate"

    # The problem is solved
    prob.solve()

    # The variable values are rounded
    prob.roundSolution()

    newPatterns = []
    # Check if there are more patterns which would reduce the master LP objective function further
    if value(prob.objective) < -10**-5:
        varsdict = {}
        for v in prob.variables():
            varsdict[v.name] = v.varValue
        # Adds the new pattern to the newPatterns list
        newPatterns += [[int(varsdict["Roll_Length_5"]),int(varsdict["Roll_Length_7"]),int(varsdict["Roll_Length_9"])]]

    return newPatterns