1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
#!/usr/bin/env python
# @(#) $Jeannot: test2.py,v 1.16 2004/03/20 17:06:54 js Exp $
# This example is a PuLP rendition of the todd.mod problem included in the GLPK
# 4.4 distribution. It's a hard knapsack problem.
# Import PuLP modeler functions
from pulp import *
# Import math functions
from math import *
# A new LP problem
prob = LpProblem("test2", LpMaximize)
# Parameters
# Size of the problem
n = 15
k = floor(log(n)/log(2));
# A vector of n binary variables
x = LpVariable.matrix("x", list(range(n)), 0, 1, LpInteger)
# A vector of weights
a = [pow(2,k + n + 1) + pow(2,k + n + 1 - j) + 1 for j in range(1,n+1)]
# The maximum weight
b = 0.5 * floor(sum(a))
# The total weight
weight = lpDot(a, x)
# Objective
prob += weight
# Constraint
prob += weight <= b
# Resolution
prob.solve()
# Print the status of the solved LP
print("Status:", LpStatus[prob.status])
# Print the value of the variables at the optimum
for v in prob.variables():
print(v.name, "=", v.varValue)
# Print the value of the objective
print("objective=", value(prob.objective))
|