File: test5.py

package info (click to toggle)
python-pulp 1.6.0%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 14,596 kB
  • sloc: python: 6,006; sh: 12; makefile: 5
file content (53 lines) | stat: -rw-r--r-- 1,218 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python
# @(#) $Jeannot: test5.py,v 1.2 2004/03/20 17:06:54 js Exp $

# Market splitting problems from:
# G. Cornuejols, M. Dawande, A class of hard small 0-1 programs, 1998.

# With m>=4, these problems are often *very* difficult.

# Import PuLP modeler functions
from pulp import *

# Import random number generation functions
from random import *

# A new LP problem
prob = LpProblem("test5", LpMinimize)

# Parameters
# Number of constraints
m = 3
# Size of the integers involved
D = 100

# Number of variables
n = 10*(m-1)

# A vector of n binary variables
x = LpVariable.matrix("x", list(range(n)), 0, 1, LpInteger)

# Slacks
s = LpVariable.matrix("s", list(range(m)), 0)
w = LpVariable.matrix("w", list(range(m)), 0)

# Objective
prob += lpSum(s) + lpSum(w)

# Constraints
d = [[randint(0,D) for i in range(n)] for j in range(m)]
for j in range(m):
	prob += lpDot(d[j], x) + s[j] - w[j] == lpSum(d[j])/2

# Resolution
prob.solve()

# Print the status of the solved LP
print("Status:", LpStatus[prob.status])

# Print the value of the variables at the optimum
for v in prob.variables():
	print(v.name, "=", v.varValue)

# Print the value of the objective
print("objective=", value(prob.objective))