1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
How to import and export models in PuLP
==========================================
Exporting a model can be useful when the building time takes too long or when the model needs to be passed to another computer to solve. Or any other reason.
PuLP offers two ways to export a model: to an mps file or to a dictionary /json file. Each offers advantages over the other.
**The mps format** is an industry standard. But it is not very flexible so some information cannot be stored. It stores only variables and constraints. It does not store the values of variables.
**The dictionary/ json format** is made to fit how pulp stores the information and so it does not lose information: this format file saves enough data to be able to restore a complete pulp model on reading it.
The interface to import and export for both formats is similar as can be seen in the Example 1 below.
Considerations
------------------
The following considerations need to be taken into account:
#. Variable names need to be unique. PuLP permits having variable names because it uses an internal code for each one. But we do not export that code. So we identify variables by their name only.
#. Variables are not exported in a grouped way. This means that if you have several `dictionaries of many variables each` you will end up with a very long list of variables. This can be seen in the Example 2.
#. Output information is also written to the json format. This means that the status, solution status, the values of variables and shadow prices / reduced costs are exported too. This means that it is possible to export a model that has been solved and then read it again only to see the values of the variables.
#. For json, we use the base `json` package. But if `ujson` is available, we use that so the import / export can be really fast.
Example 1: json
----------------
A very simple example taken from the internal tests. Imagine the following problem::
from pulp import *
prob = LpProblem("test_export_dict_MIP", LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0, None, LpInteger)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7.5, "c3"
We can now export the problem into a dictionary::
data = prob.to_dict()
We now have a dictionary with a lot of data::
{'constraints': [{'coefficients': [{'name': 'x', 'value': 1},
{'name': 'y', 'value': 1}],
'constant': -5,
'name': 'c1',
'pi': None,
'sense': -1},
{'coefficients': [{'name': 'x', 'value': 1},
{'name': 'z', 'value': 1}],
'constant': -10,
'name': 'c2',
'pi': None,
'sense': 1},
{'coefficients': [{'name': 'y', 'value': -1},
{'name': 'z', 'value': 1}],
'constant': -7.5,
'name': 'c3',
'pi': None,
'sense': 0}],
'objective': {'coefficients': [{'name': 'x', 'value': 1},
{'name': 'y', 'value': 4},
{'name': 'z', 'value': 9}],
'name': 'obj'},
'parameters': {'name': 'test_export_dict_MIP',
'sense': 1,
'sol_status': 0,
'status': 0},
'sos1': {},
'sos2': {},
'variables': [{'cat': 'Continuous',
'dj': None,
'lowBound': 0,
'name': 'x',
'upBound': 4,
'varValue': None},
{'cat': 'Continuous',
'dj': None,
'lowBound': -1,
'name': 'y',
'upBound': 1,
'varValue': None},
{'cat': 'Integer',
'dj': None,
'lowBound': 0,
'name': 'z',
'upBound': None,
'varValue': None}]}
We can now import this dictionary::
var1, prob1 = LpProblem.from_dict(data)
var1
# {'x': x, 'y': y, 'z': z}
prob1
# test_export_dict_MIP:
# MINIMIZE
# 1*x + 4*y + 9*z + 0
# SUBJECT TO
# c1: x + y <= 5
# c2: x + z >= 10
# c3: - y + z = 7.5
# VARIABLES
# x <= 4 Continuous
# -1 <= y <= 1 Continuous
# 0 <= z Integer
As you can see we get a tuple with size 2 with: (1) a variables dictionary and (2) a PuLP model object. We can now solve that problem::
prob1.solve()
And the result will be available in our *new* variables::
var1['x'].value()
# 3.0
Example 1: mps
----------------
The same model::
from pulp import *
prob = LpProblem("test_export_dict_MIP", LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0, None, LpInteger)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7.5, "c3"
We can now export the problem into an mps file::
prob.writeMPS("test.mps")
We can now import this file::
var1, prob1 = LpProblem.fromMPS("test.mps")
var1
# {'x': x, 'y': y, 'z': z}
prob1
# test_export_dict_MIP:
# MINIMIZE
# 1*x + 4*y + 9*z + 0
# SUBJECT TO
# c1: x + y <= 5
# c2: x + z >= 10
# c3: - y + z = 7.5
# VARIABLES
# x <= 4 Continuous
# -1 <= y <= 1 Continuous
# 0 <= z Integer
The resulting tuple is exactly the same format as the previous one.
Example 2: json
------------------
We will use as example the model in :ref:`set-partitioning-problem`::
import pulp
max_tables = 5
max_table_size = 4
guests = 'A B C D E F G I J K L M N O P Q R'.split()
def happiness(table):
"""
Find the happiness of the table
- by calculating the maximum distance between the letters
"""
return abs(ord(table[0]) - ord(table[-1]))
#create list of all possible tables
possible_tables = [tuple(c) for c in pulp.allcombinations(guests,
max_table_size)]
#create a binary variable to state that a table setting is used
x = pulp.LpVariable.dicts('table', possible_tables,
lowBound = 0,
upBound = 1,
cat = pulp.LpInteger)
seating_model = pulp.LpProblem("Wedding_Seating_Model", pulp.LpMinimize)
seating_model += pulp.lpSum([happiness(table) * x[table] for table in possible_tables])
#specify the maximum number of tables
seating_model += pulp.lpSum([x[table] for table in possible_tables]) <= max_tables, \
"Maximum_number_of_tables"
#A guest must seated at one and only one table
for guest in guests:
seating_model += pulp.lpSum([x[table] for table in possible_tables
if guest in table]) == 1, "Must_seat_%s"%guest
We *could* directly solve the model doing::
seating_model.solve()
Instead, we are going to export it to a json file::
seating_model.to_json("seating_model.json")
And re-import it::
wedding_vars, wedding_model = LpProblem.from_json("seating_model.json")
We inspect the variables::
wedding_vars
{"table_('A',)": table_('A',), "table_('A',_'B')": table_('A',_'B'), "table_('A',_'B',_'C')": table_('A',_'B',_'C'), "table_('A',_'B',_'C',_'D')": table_('A',_'B',_'C',_'D'), "table_('A',_'B',_'C',_'E')": table_('A',_'B',_'C',_'E'), ...}
As can be seen, it is no longer a dictionary indexed by the original tuples. Unfortunately, it has become a flat dictionary with concatenated names.
We can still solve the model, though::
wedding_model.solve()
And inspect some of the values::
wedding_vars["table_('M',_'N')"].value()
# 1.0
Grouping variables
------------------------------------
As the "Considerations" section mentions, the grouping of variables is not restored automatically. Nevertheless, by using some strict naming convention on variable names and clever parsing, one can reconstruct the original structure of the variables.
Caveats with json and pandas / numpy data types
--------------------------------------------------
The `json` module in python has some issues transforming numpy data types (e.g., `np.integer`). The easier way to solve this problem is to provide a custom encoding class as shown `here <https://stackoverflow.com/a/57915246/6508131>`_::
import numpy as np
#(...)
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(NpEncoder, self).default(obj)
wedding_model.to_json("seating_model.json", cls=NpEncoder)
Note that this custom encoding class may not work with the `ujson` package. An alternative is to cast all values using `int()` or `float()` before using them in `pulp`.
|