File: WhiskasModel1.py

package info (click to toggle)
python-pulp 2.6.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,720 kB
  • sloc: python: 7,505; makefile: 16; sh: 16
file content (41 lines) | stat: -rw-r--r-- 1,395 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
The Simplified Whiskas Model Python Formulation for the PuLP Modeller

Authors: Antony Phillips, Dr Stuart Mitchell  2007
"""

# Import PuLP modeler functions
from pulp import *

# Create the 'prob' variable to contain the problem data
prob = LpProblem("The Whiskas Problem", LpMinimize)

# The 2 variables Beef and Chicken are created with a lower limit of zero
x1 = LpVariable("ChickenPercent", 0, None, LpInteger)
x2 = LpVariable("BeefPercent", 0)

# The objective function is added to 'prob' first
prob += 0.013 * x1 + 0.008 * x2, "Total Cost of Ingredients per can"

# The five constraints are entered
prob += x1 + x2 == 100, "PercentagesSum"
prob += 0.100 * x1 + 0.200 * x2 >= 8.0, "ProteinRequirement"
prob += 0.080 * x1 + 0.100 * x2 >= 6.0, "FatRequirement"
prob += 0.001 * x1 + 0.005 * x2 <= 2.0, "FibreRequirement"
prob += 0.002 * x1 + 0.005 * x2 <= 0.4, "SaltRequirement"

# The problem data is written to an .lp file
prob.writeLP("WhiskasModel.lp")

# The problem is solved using PuLP's choice of Solver
prob.solve()

# The status of the solution is printed to the screen
print("Status:", LpStatus[prob.status])

# Each of the variables is printed with it's resolved optimum value
for v in prob.variables():
    print(v.name, "=", v.varValue)

# The optimised objective function value is printed to the screen
print("Total Cost of Ingredients per can = ", value(prob.objective))