1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
|
# PuLP : Python LP Modeler
# Version 1.4.2
# Copyright (c) 2002-2005, Jean-Sebastien Roy (js@jeannot.org)
# Modifications Copyright (c) 2007- Stuart Anthony Mitchell (s.mitchell@auckland.ac.nz)
# $Id:solvers.py 1791 2008-04-23 22:54:34Z smit023 $
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."""
from .core import LpSolver_CMD, LpSolver, subprocess, PulpSolverError, clock, log
from .core import cbc_path, pulp_cbc_path, coinMP_path, devnull
import os
from .. import constants
from tempfile import mktemp
import ctypes
import warnings
class COIN_CMD(LpSolver_CMD):
"""The COIN CLP/CBC LP solver
now only uses cbc
"""
name = "COIN_CMD"
def defaultPath(self):
return self.executableExtension(cbc_path)
def __init__(
self,
mip=True,
msg=True,
timeLimit=None,
fracGap=None,
maxSeconds=None,
gapRel=None,
gapAbs=None,
presolve=None,
cuts=None,
strong=None,
options=None,
warmStart=False,
keepFiles=False,
path=None,
threads=None,
logPath=None,
timeMode="elapsed",
mip_start=False,
):
"""
:param bool mip: if False, assume LP even if integer variables
:param bool msg: if False, no log is shown
:param float timeLimit: maximum time for solver (in seconds)
:param float gapRel: relative gap tolerance for the solver to stop (in fraction)
:param float gapAbs: absolute gap tolerance for the solver to stop
:param int threads: sets the maximum number of threads
:param list options: list of additional options to pass to solver
:param bool warmStart: if True, the solver will use the current value of variables as a start
:param bool keepFiles: if True, files are saved in the current directory and not deleted after solving
:param str path: path to the solver binary
:param str logPath: path to the log file
:param bool presolve: if True, adds presolve on
:param bool cuts: if True, adds gomory on knapsack on probing on
:param bool strong: if True, adds strong
:param float fracGap: deprecated for gapRel
:param float maxSeconds: deprecated for timeLimit
:param str timeMode: "elapsed": count wall-time to timeLimit; "cpu": count cpu-time
:param bool mip_start: deprecated for warmStart
"""
if fracGap is not None:
warnings.warn("Parameter fracGap is being depreciated for gapRel")
if gapRel is not None:
warnings.warn("Parameter gapRel and fracGap passed, using gapRel")
else:
gapRel = fracGap
if maxSeconds is not None:
warnings.warn("Parameter maxSeconds is being depreciated for timeLimit")
if timeLimit is not None:
warnings.warn(
"Parameter timeLimit and maxSeconds passed, using timeLimit"
)
else:
timeLimit = maxSeconds
if mip_start:
warnings.warn("Parameter mip_start is being depreciated for warmStart")
if warmStart:
warnings.warn(
"Parameter mipStart and mip_start passed, using warmStart"
)
else:
warmStart = mip_start
LpSolver_CMD.__init__(
self,
gapRel=gapRel,
mip=mip,
msg=msg,
timeLimit=timeLimit,
presolve=presolve,
cuts=cuts,
strong=strong,
options=options,
warmStart=warmStart,
path=path,
keepFiles=keepFiles,
threads=threads,
gapAbs=gapAbs,
logPath=logPath,
timeMode=timeMode,
)
def copy(self):
"""Make a copy of self"""
aCopy = LpSolver_CMD.copy(self)
aCopy.optionsDict = self.optionsDict
return aCopy
def actualSolve(self, lp, **kwargs):
"""Solve a well formulated lp problem"""
return self.solve_CBC(lp, **kwargs)
def available(self):
"""True if the solver is available"""
return self.executable(self.path)
def solve_CBC(self, lp, use_mps=True):
"""Solve a MIP problem using CBC"""
if not self.executable(self.path):
raise PulpSolverError(
"Pulp: cannot execute %s cwd: %s" % (self.path, os.getcwd())
)
tmpLp, tmpMps, tmpSol, tmpMst = self.create_tmp_files(
lp.name, "lp", "mps", "sol", "mst"
)
if use_mps:
vs, variablesNames, constraintsNames, objectiveName = lp.writeMPS(
tmpMps, rename=1
)
cmds = " " + tmpMps + " "
if lp.sense == constants.LpMaximize:
cmds += "max "
else:
vs = lp.writeLP(tmpLp)
# In the Lp we do not create new variable or constraint names:
variablesNames = dict((v.name, v.name) for v in vs)
constraintsNames = dict((c, c) for c in lp.constraints)
cmds = " " + tmpLp + " "
if self.optionsDict.get("warmStart", False):
self.writesol(tmpMst, lp, vs, variablesNames, constraintsNames)
cmds += "mips {} ".format(tmpMst)
if self.timeLimit is not None:
cmds += "sec %s " % self.timeLimit
options = self.options + self.getOptions()
for option in options:
cmds += option + " "
if self.mip:
cmds += "branch "
else:
cmds += "initialSolve "
cmds += "printingOptions all "
cmds += "solution " + tmpSol + " "
if self.msg:
pipe = None
else:
pipe = open(os.devnull, "w")
logPath = self.optionsDict.get("logPath")
if logPath:
if self.msg:
warnings.warn(
"`logPath` argument replaces `msg=1`. The output will be redirected to the log file."
)
pipe = open(self.optionsDict["logPath"], "w")
log.debug(self.path + cmds)
args = []
args.append(self.path)
args.extend(cmds[1:].split())
cbc = subprocess.Popen(args, stdout=pipe, stderr=pipe, stdin=devnull)
if cbc.wait() != 0:
if pipe:
pipe.close()
raise PulpSolverError(
"Pulp: Error while trying to execute, use msg=True for more details"
+ self.path
)
if pipe:
pipe.close()
if not os.path.exists(tmpSol):
raise PulpSolverError("Pulp: Error while executing " + self.path)
(
status,
values,
reducedCosts,
shadowPrices,
slacks,
sol_status,
) = self.readsol_MPS(tmpSol, lp, vs, variablesNames, constraintsNames)
lp.assignVarsVals(values)
lp.assignVarsDj(reducedCosts)
lp.assignConsPi(shadowPrices)
lp.assignConsSlack(slacks, activity=True)
lp.assignStatus(status, sol_status)
self.delete_tmp_files(tmpMps, tmpLp, tmpSol, tmpMst)
return status
def getOptions(self):
params_eq = dict(
gapRel="ratio {}",
gapAbs="allow {}",
threads="threads {}",
presolve="presolve on",
strong="strong {}",
cuts="gomory on knapsack on probing on",
timeMode="timeMode {}",
)
return [
v.format(self.optionsDict[k])
for k, v in params_eq.items()
if self.optionsDict.get(k) is not None
]
def readsol_MPS(
self, filename, lp, vs, variablesNames, constraintsNames, objectiveName=None
):
"""
Read a CBC solution file generated from an mps or lp file (possible different names)
"""
values = dict((v.name, 0) for v in vs)
reverseVn = dict((v, k) for k, v in variablesNames.items())
reverseCn = dict((v, k) for k, v in constraintsNames.items())
reducedCosts = {}
shadowPrices = {}
slacks = {}
status, sol_status = self.get_status(filename)
with open(filename) as f:
for l in f:
if len(l) <= 2:
break
l = l.split()
# incase the solution is infeasible
if l[0] == "**":
l = l[1:]
vn = l[1]
val = l[2]
dj = l[3]
if vn in reverseVn:
values[reverseVn[vn]] = float(val)
reducedCosts[reverseVn[vn]] = float(dj)
if vn in reverseCn:
slacks[reverseCn[vn]] = float(val)
shadowPrices[reverseCn[vn]] = float(dj)
return status, values, reducedCosts, shadowPrices, slacks, sol_status
def writesol(self, filename, lp, vs, variablesNames, constraintsNames):
"""
Writes a CBC solution file generated from an mps / lp file (possible different names)
returns True on success
"""
values = dict((v.name, v.value() if v.value() is not None else 0) for v in vs)
value_lines = []
value_lines += [
(i, v, values[k], 0) for i, (k, v) in enumerate(variablesNames.items())
]
lines = ["Stopped on time - objective value 0\n"]
lines += ["{0:>7} {1} {2:>15} {3:>23}\n".format(*tup) for tup in value_lines]
with open(filename, "w") as f:
f.writelines(lines)
return True
def readsol_LP(self, filename, lp, vs):
"""
Read a CBC solution file generated from an lp (good names)
returns status, values, reducedCosts, shadowPrices, slacks, sol_status
"""
variablesNames = dict((v.name, v.name) for v in vs)
constraintsNames = dict((c, c) for c in lp.constraints)
return self.readsol_MPS(filename, lp, vs, variablesNames, constraintsNames)
def get_status(self, filename):
cbcStatus = {
"Optimal": constants.LpStatusOptimal,
"Infeasible": constants.LpStatusInfeasible,
"Integer": constants.LpStatusInfeasible,
"Unbounded": constants.LpStatusUnbounded,
"Stopped": constants.LpStatusNotSolved,
}
cbcSolStatus = {
"Optimal": constants.LpSolutionOptimal,
"Infeasible": constants.LpSolutionInfeasible,
"Unbounded": constants.LpSolutionUnbounded,
"Stopped": constants.LpSolutionNoSolutionFound,
}
with open(filename) as f:
statusstrs = f.readline().split()
status = cbcStatus.get(statusstrs[0], constants.LpStatusUndefined)
sol_status = cbcSolStatus.get(
statusstrs[0], constants.LpSolutionNoSolutionFound
)
# here we could use some regex expression.
# Not sure what's more desirable
if status == constants.LpStatusNotSolved and len(statusstrs) >= 5:
if statusstrs[4] == "objective":
status = constants.LpStatusOptimal
sol_status = constants.LpSolutionIntegerFeasible
return status, sol_status
COIN = COIN_CMD
class PULP_CBC_CMD(COIN_CMD):
"""
This solver uses a precompiled version of cbc provided with the package
"""
name = "PULP_CBC_CMD"
pulp_cbc_path = pulp_cbc_path
try:
if os.name != "nt":
if not os.access(pulp_cbc_path, os.X_OK):
import stat
os.chmod(pulp_cbc_path, stat.S_IXUSR + stat.S_IXOTH)
except: # probably due to incorrect permissions
def available(self):
"""True if the solver is available"""
return False
def actualSolve(self, lp, callback=None):
"""Solve a well formulated lp problem"""
raise PulpSolverError(
"PULP_CBC_CMD: Not Available (check permissions on %s)"
% self.pulp_cbc_path
)
else:
def __init__(
self,
mip=True,
msg=True,
timeLimit=None,
fracGap=None,
maxSeconds=None,
gapRel=None,
gapAbs=None,
presolve=None,
cuts=None,
strong=None,
options=None,
warmStart=False,
keepFiles=False,
path=None,
threads=None,
logPath=None,
mip_start=False,
timeMode="elapsed",
):
if path is not None:
raise PulpSolverError("Use COIN_CMD if you want to set a path")
# check that the file is executable
COIN_CMD.__init__(
self,
path=self.pulp_cbc_path,
mip=mip,
msg=msg,
timeLimit=timeLimit,
fracGap=fracGap,
maxSeconds=maxSeconds,
gapRel=gapRel,
gapAbs=gapAbs,
presolve=presolve,
cuts=cuts,
strong=strong,
options=options,
warmStart=warmStart,
keepFiles=keepFiles,
threads=threads,
logPath=logPath,
mip_start=mip_start,
timeMode=timeMode,
)
def COINMP_DLL_load_dll(path):
"""
function that loads the DLL useful for debugging installation problems
"""
if os.name == "nt":
lib = ctypes.windll.LoadLibrary(str(path[-1]))
else:
# linux hack to get working
mode = ctypes.RTLD_GLOBAL
for libpath in path[:-1]:
# RTLD_LAZY = 0x00001
ctypes.CDLL(libpath, mode=mode)
lib = ctypes.CDLL(path[-1], mode=mode)
return lib
class COINMP_DLL(LpSolver):
"""
The COIN_MP LP MIP solver (via a DLL or linux so)
:param timeLimit: The number of seconds before forcing the solver to exit
:param epgap: The fractional mip tolerance
"""
name = "COINMP_DLL"
try:
lib = COINMP_DLL_load_dll(coinMP_path)
except (ImportError, OSError):
@classmethod
def available(cls):
"""True if the solver is available"""
return False
def actualSolve(self, lp):
"""Solve a well formulated lp problem"""
raise PulpSolverError("COINMP_DLL: Not Available")
else:
COIN_INT_LOGLEVEL = 7
COIN_REAL_MAXSECONDS = 16
COIN_REAL_MIPMAXSEC = 19
COIN_REAL_MIPFRACGAP = 34
lib.CoinGetInfinity.restype = ctypes.c_double
lib.CoinGetVersionStr.restype = ctypes.c_char_p
lib.CoinGetSolutionText.restype = ctypes.c_char_p
lib.CoinGetObjectValue.restype = ctypes.c_double
lib.CoinGetMipBestBound.restype = ctypes.c_double
def __init__(
self,
cuts=1,
presolve=1,
dual=1,
crash=0,
scale=1,
rounding=1,
integerPresolve=1,
strong=5,
epgap=None,
*args,
**kwargs
):
LpSolver.__init__(self, *args, **kwargs)
self.fracGap = None
if epgap is not None:
self.fracGap = float(epgap)
if self.timeLimit is not None:
self.timeLimit = float(self.timeLimit)
# Todo: these options are not yet implemented
self.cuts = cuts
self.presolve = presolve
self.dual = dual
self.crash = crash
self.scale = scale
self.rounding = rounding
self.integerPresolve = integerPresolve
self.strong = strong
def copy(self):
"""Make a copy of self"""
aCopy = LpSolver.copy(self)
aCopy.cuts = self.cuts
aCopy.presolve = self.presolve
aCopy.dual = self.dual
aCopy.crash = self.crash
aCopy.scale = self.scale
aCopy.rounding = self.rounding
aCopy.integerPresolve = self.integerPresolve
aCopy.strong = self.strong
return aCopy
@classmethod
def available(cls):
"""True if the solver is available"""
return True
def getSolverVersion(self):
"""
returns a solver version string
example:
>>> COINMP_DLL().getSolverVersion() # doctest: +ELLIPSIS
'...'
"""
return self.lib.CoinGetVersionStr()
def actualSolve(self, lp):
"""Solve a well formulated lp problem"""
# TODO alter so that msg parameter is handled correctly
self.debug = 0
# initialise solver
self.lib.CoinInitSolver("")
# create problem
self.hProb = hProb = self.lib.CoinCreateProblem(lp.name)
# set problem options
self.lib.CoinSetIntOption(
hProb, self.COIN_INT_LOGLEVEL, ctypes.c_int(self.msg)
)
if self.timeLimit:
if self.mip:
self.lib.CoinSetRealOption(
hProb, self.COIN_REAL_MIPMAXSEC, ctypes.c_double(self.timeLimit)
)
else:
self.lib.CoinSetRealOption(
hProb,
self.COIN_REAL_MAXSECONDS,
ctypes.c_double(self.timeLimit),
)
if self.fracGap:
# Hopefully this is the bound gap tolerance
self.lib.CoinSetRealOption(
hProb, self.COIN_REAL_MIPFRACGAP, ctypes.c_double(self.fracGap)
)
# CoinGetInfinity is needed for varibles with no bounds
coinDblMax = self.lib.CoinGetInfinity()
if self.debug:
print("Before getCoinMPArrays")
(
numVars,
numRows,
numels,
rangeCount,
objectSense,
objectCoeffs,
objectConst,
rhsValues,
rangeValues,
rowType,
startsBase,
lenBase,
indBase,
elemBase,
lowerBounds,
upperBounds,
initValues,
colNames,
rowNames,
columnType,
n2v,
n2c,
) = self.getCplexStyleArrays(lp)
self.lib.CoinLoadProblem(
hProb,
numVars,
numRows,
numels,
rangeCount,
objectSense,
objectConst,
objectCoeffs,
lowerBounds,
upperBounds,
rowType,
rhsValues,
rangeValues,
startsBase,
lenBase,
indBase,
elemBase,
colNames,
rowNames,
"Objective",
)
if lp.isMIP() and self.mip:
self.lib.CoinLoadInteger(hProb, columnType)
if self.msg == 0:
self.lib.CoinRegisterMsgLogCallback(
hProb, ctypes.c_char_p(""), ctypes.POINTER(ctypes.c_int)()
)
self.coinTime = -clock()
self.lib.CoinOptimizeProblem(hProb, 0)
self.coinTime += clock()
# TODO: check Integer Feasible status
CoinLpStatus = {
0: constants.LpStatusOptimal,
1: constants.LpStatusInfeasible,
2: constants.LpStatusInfeasible,
3: constants.LpStatusNotSolved,
4: constants.LpStatusNotSolved,
5: constants.LpStatusNotSolved,
-1: constants.LpStatusUndefined,
}
solutionStatus = self.lib.CoinGetSolutionStatus(hProb)
solutionText = self.lib.CoinGetSolutionText(hProb)
objectValue = self.lib.CoinGetObjectValue(hProb)
# get the solution values
NumVarDoubleArray = ctypes.c_double * numVars
NumRowsDoubleArray = ctypes.c_double * numRows
cActivity = NumVarDoubleArray()
cReducedCost = NumVarDoubleArray()
cSlackValues = NumRowsDoubleArray()
cShadowPrices = NumRowsDoubleArray()
self.lib.CoinGetSolutionValues(
hProb,
ctypes.byref(cActivity),
ctypes.byref(cReducedCost),
ctypes.byref(cSlackValues),
ctypes.byref(cShadowPrices),
)
variablevalues = {}
variabledjvalues = {}
constraintpivalues = {}
constraintslackvalues = {}
if lp.isMIP() and self.mip:
lp.bestBound = self.lib.CoinGetMipBestBound(hProb)
for i in range(numVars):
variablevalues[self.n2v[i].name] = cActivity[i]
variabledjvalues[self.n2v[i].name] = cReducedCost[i]
lp.assignVarsVals(variablevalues)
lp.assignVarsDj(variabledjvalues)
# put pi and slack variables against the constraints
for i in range(numRows):
constraintpivalues[self.n2c[i]] = cShadowPrices[i]
constraintslackvalues[self.n2c[i]] = cSlackValues[i]
lp.assignConsPi(constraintpivalues)
lp.assignConsSlack(constraintslackvalues)
self.lib.CoinFreeSolver()
status = CoinLpStatus[self.lib.CoinGetSolutionStatus(hProb)]
lp.assignStatus(status)
return status
if COINMP_DLL.available():
COIN = COINMP_DLL
yaposib = None
class YAPOSIB(LpSolver):
"""
COIN OSI (via its python interface)
Copyright Christophe-Marie Duquesne 2012
The yaposib variables are available (after a solve) in var.solverVar
The yaposib constraints are available in constraint.solverConstraint
The Model is in prob.solverModel
"""
name = "YAPOSIB"
try:
# import the model into the global scope
global yaposib
import yaposib
except ImportError:
def available(self):
"""True if the solver is available"""
return False
def actualSolve(self, lp, callback=None):
"""Solve a well formulated lp problem"""
raise PulpSolverError("YAPOSIB: Not Available")
else:
def __init__(
self,
mip=True,
msg=True,
timeLimit=None,
epgap=None,
solverName=None,
**solverParams
):
"""
Initializes the yaposib solver.
@param mip: if False the solver will solve a MIP as
an LP
@param msg: displays information from the solver to
stdout
@param timeLimit: not supported
@param epgap: not supported
@param solverParams: not supported
"""
LpSolver.__init__(self, mip, msg)
if solverName:
self.solverName = solverName
else:
self.solverName = yaposib.available_solvers()[0]
def findSolutionValues(self, lp):
model = lp.solverModel
solutionStatus = model.status
yaposibLpStatus = {
"optimal": constants.LpStatusOptimal,
"undefined": constants.LpStatusUndefined,
"abandoned": constants.LpStatusInfeasible,
"infeasible": constants.LpStatusInfeasible,
"limitreached": constants.LpStatusInfeasible,
}
# populate pulp solution values
for var in lp.variables():
var.varValue = var.solverVar.solution
var.dj = var.solverVar.reducedcost
# put pi and slack variables against the constraints
for constr in lp.constraints.values():
constr.pi = constr.solverConstraint.dual
constr.slack = -constr.constant - constr.solverConstraint.activity
if self.msg:
print("yaposib status=", solutionStatus)
lp.resolveOK = True
for var in lp.variables():
var.isModified = False
status = yaposibLpStatus.get(solutionStatus, constants.LpStatusUndefined)
lp.assignStatus(status)
return status
def available(self):
"""True if the solver is available"""
return True
def callSolver(self, lp, callback=None):
"""Solves the problem with yaposib"""
savestdout = None
if self.msg == 0:
# close stdout to get rid of messages
tempfile = open(mktemp(), "w")
savestdout = os.dup(1)
os.close(1)
if os.dup(tempfile.fileno()) != 1:
raise PulpSolverError("couldn't redirect stdout - dup() error")
self.solveTime = -clock()
lp.solverModel.solve(self.mip)
self.solveTime += clock()
if self.msg == 0:
# reopen stdout
os.close(1)
os.dup(savestdout)
os.close(savestdout)
def buildSolverModel(self, lp):
"""
Takes the pulp lp model and translates it into a yaposib model
"""
log.debug("create the yaposib model")
lp.solverModel = yaposib.Problem(self.solverName)
prob = lp.solverModel
prob.name = lp.name
log.debug("set the sense of the problem")
if lp.sense == constants.LpMaximize:
prob.obj.maximize = True
log.debug("add the variables to the problem")
for var in lp.variables():
col = prob.cols.add(yaposib.vec([]))
col.name = var.name
if not var.lowBound is None:
col.lowerbound = var.lowBound
if not var.upBound is None:
col.upperbound = var.upBound
if var.cat == constants.LpInteger:
col.integer = True
prob.obj[col.index] = lp.objective.get(var, 0.0)
var.solverVar = col
log.debug("add the Constraints to the problem")
for name, constraint in lp.constraints.items():
row = prob.rows.add(
yaposib.vec(
[
(var.solverVar.index, value)
for var, value in constraint.items()
]
)
)
if constraint.sense == constants.LpConstraintLE:
row.upperbound = -constraint.constant
elif constraint.sense == constants.LpConstraintGE:
row.lowerbound = -constraint.constant
elif constraint.sense == constants.LpConstraintEQ:
row.upperbound = -constraint.constant
row.lowerbound = -constraint.constant
else:
raise PulpSolverError("Detected an invalid constraint type")
row.name = name
constraint.solverConstraint = row
def actualSolve(self, lp, callback=None):
"""
Solve a well formulated lp problem
creates a yaposib model, variables and constraints and attaches
them to the lp model which it then solves
"""
self.buildSolverModel(lp)
# set the initial solution
log.debug("Solve the model using yaposib")
self.callSolver(lp, callback=callback)
# get the solution information
solutionStatus = self.findSolutionValues(lp)
for var in lp.variables():
var.modified = False
for constraint in lp.constraints.values():
constraint.modified = False
return solutionStatus
def actualResolve(self, lp, callback=None):
"""
Solve a well formulated lp problem
uses the old solver and modifies the rhs of the modified
constraints
"""
log.debug("Resolve the model using yaposib")
for constraint in lp.constraints.values():
row = constraint.solverConstraint
if constraint.modified:
if constraint.sense == constants.LpConstraintLE:
row.upperbound = -constraint.constant
elif constraint.sense == constants.LpConstraintGE:
row.lowerbound = -constraint.constant
elif constraint.sense == constants.LpConstraintEQ:
row.upperbound = -constraint.constant
row.lowerbound = -constraint.constant
else:
raise PulpSolverError("Detected an invalid constraint type")
self.callSolver(lp, callback=callback)
# get the solution information
solutionStatus = self.findSolutionValues(lp)
for var in lp.variables():
var.modified = False
for constraint in lp.constraints.values():
constraint.modified = False
return solutionStatus
|