1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
# PuLP : Python LP Modeler
# Version 1.4.2
# Copyright (c) 2002-2005, Jean-Sebastien Roy (js@jeannot.org)
# Modifications Copyright (c) 2007- Stuart Anthony Mitchell (s.mitchell@auckland.ac.nz)
# $Id:solvers.py 1791 2008-04-23 22:54:34Z smit023 $
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."""
from .core import LpSolver_CMD, subprocess, PulpSolverError
import os
from .. import constants
import warnings
class MIPCL_CMD(LpSolver_CMD):
"""The MIPCL_CMD solver"""
name = "MIPCL_CMD"
def __init__(
self,
path=None,
keepFiles=False,
mip=True,
msg=True,
options=None,
timeLimit=None,
):
"""
:param bool mip: if False, assume LP even if integer variables
:param bool msg: if False, no log is shown
:param float timeLimit: maximum time for solver (in seconds)
:param list options: list of additional options to pass to solver
:param bool keepFiles: if True, files are saved in the current directory and not deleted after solving
:param str path: path to the solver binary
"""
LpSolver_CMD.__init__(
self,
mip=mip,
msg=msg,
timeLimit=timeLimit,
options=options,
path=path,
keepFiles=keepFiles,
)
def defaultPath(self):
return self.executableExtension("mps_mipcl")
def available(self):
"""True if the solver is available"""
return self.executable(self.path)
def actualSolve(self, lp):
"""Solve a well formulated lp problem"""
if not self.executable(self.path):
raise PulpSolverError("PuLP: cannot execute " + self.path)
tmpMps, tmpSol = self.create_tmp_files(lp.name, "mps", "sol")
if lp.sense == constants.LpMaximize:
# we swap the objectives
# because it does not handle maximization.
warnings.warn(
"MIPCL_CMD does not allow maximization, "
"we will minimize the inverse of the objective function."
)
lp += -lp.objective
lp.checkDuplicateVars()
lp.checkLengthVars(52)
lp.writeMPS(tmpMps, mpsSense=lp.sense)
# just to report duplicated variables:
try:
os.remove(tmpSol)
except:
pass
cmd = self.path
cmd += " %s" % tmpMps
cmd += " -solfile %s" % tmpSol
if self.timeLimit is not None:
cmd += " -time %s" % self.timeLimit
for option in self.options:
cmd += " " + option
if lp.isMIP():
if not self.mip:
warnings.warn("MIPCL_CMD cannot solve the relaxation of a problem")
if self.msg:
pipe = None
else:
pipe = open(os.devnull, "w")
return_code = subprocess.call(cmd.split(), stdout=pipe, stderr=pipe)
# We need to undo the objective swap before finishing
if lp.sense == constants.LpMaximize:
lp += -lp.objective
if return_code != 0:
raise PulpSolverError("PuLP: Error while trying to execute " + self.path)
if not os.path.exists(tmpSol):
status = constants.LpStatusNotSolved
status_sol = constants.LpSolutionNoSolutionFound
values = None
else:
status, values, status_sol = self.readsol(tmpSol)
self.delete_tmp_files(tmpMps, tmpSol)
lp.assignStatus(status, status_sol)
if status not in [constants.LpStatusInfeasible, constants.LpStatusNotSolved]:
lp.assignVarsVals(values)
return status
@staticmethod
def readsol(filename):
"""Read a MIPCL solution file"""
with open(filename) as f:
content = f.readlines()
content = [l.strip() for l in content]
values = {}
if not len(content):
return (
constants.LpStatusNotSolved,
values,
constants.LpSolutionNoSolutionFound,
)
first_line = content[0]
if first_line == "=infeas=":
return constants.LpStatusInfeasible, values, constants.LpSolutionInfeasible
objective, value = first_line.split()
# this is a workaround.
# Not sure if it always returns this limit when unbounded.
if abs(float(value)) >= 9.999999995e10:
return constants.LpStatusUnbounded, values, constants.LpSolutionUnbounded
for line in content[1:]:
name, value = line.split()
values[name] = float(value)
# I'm not sure how this solver announces the optimality
# of a solution so we assume it is integer feasible
return constants.LpStatusOptimal, values, constants.LpSolutionIntegerFeasible
|