File: mipcl_api.py

package info (click to toggle)
python-pulp 2.6.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,720 kB
  • sloc: python: 7,505; makefile: 16; sh: 16
file content (154 lines) | stat: -rw-r--r-- 5,851 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# PuLP : Python LP Modeler
# Version 1.4.2

# Copyright (c) 2002-2005, Jean-Sebastien Roy (js@jeannot.org)
# Modifications Copyright (c) 2007- Stuart Anthony Mitchell (s.mitchell@auckland.ac.nz)
# $Id:solvers.py 1791 2008-04-23 22:54:34Z smit023 $

# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:

# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."""

from .core import LpSolver_CMD, subprocess, PulpSolverError
import os
from .. import constants
import warnings


class MIPCL_CMD(LpSolver_CMD):
    """The MIPCL_CMD solver"""

    name = "MIPCL_CMD"

    def __init__(
        self,
        path=None,
        keepFiles=False,
        mip=True,
        msg=True,
        options=None,
        timeLimit=None,
    ):
        """
        :param bool mip: if False, assume LP even if integer variables
        :param bool msg: if False, no log is shown
        :param float timeLimit: maximum time for solver (in seconds)
        :param list options: list of additional options to pass to solver
        :param bool keepFiles: if True, files are saved in the current directory and not deleted after solving
        :param str path: path to the solver binary
        """
        LpSolver_CMD.__init__(
            self,
            mip=mip,
            msg=msg,
            timeLimit=timeLimit,
            options=options,
            path=path,
            keepFiles=keepFiles,
        )

    def defaultPath(self):
        return self.executableExtension("mps_mipcl")

    def available(self):
        """True if the solver is available"""
        return self.executable(self.path)

    def actualSolve(self, lp):
        """Solve a well formulated lp problem"""
        if not self.executable(self.path):
            raise PulpSolverError("PuLP: cannot execute " + self.path)
        tmpMps, tmpSol = self.create_tmp_files(lp.name, "mps", "sol")
        if lp.sense == constants.LpMaximize:
            # we swap the objectives
            # because it does not handle maximization.
            warnings.warn(
                "MIPCL_CMD does not allow maximization, "
                "we will minimize the inverse of the objective function."
            )
            lp += -lp.objective
        lp.checkDuplicateVars()
        lp.checkLengthVars(52)
        lp.writeMPS(tmpMps, mpsSense=lp.sense)

        # just to report duplicated variables:
        try:
            os.remove(tmpSol)
        except:
            pass
        cmd = self.path
        cmd += " %s" % tmpMps
        cmd += " -solfile %s" % tmpSol
        if self.timeLimit is not None:
            cmd += " -time %s" % self.timeLimit
        for option in self.options:
            cmd += " " + option
        if lp.isMIP():
            if not self.mip:
                warnings.warn("MIPCL_CMD cannot solve the relaxation of a problem")
        if self.msg:
            pipe = None
        else:
            pipe = open(os.devnull, "w")

        return_code = subprocess.call(cmd.split(), stdout=pipe, stderr=pipe)
        # We need to undo the objective swap before finishing
        if lp.sense == constants.LpMaximize:
            lp += -lp.objective
        if return_code != 0:
            raise PulpSolverError("PuLP: Error while trying to execute " + self.path)
        if not os.path.exists(tmpSol):
            status = constants.LpStatusNotSolved
            status_sol = constants.LpSolutionNoSolutionFound
            values = None
        else:
            status, values, status_sol = self.readsol(tmpSol)
        self.delete_tmp_files(tmpMps, tmpSol)
        lp.assignStatus(status, status_sol)
        if status not in [constants.LpStatusInfeasible, constants.LpStatusNotSolved]:
            lp.assignVarsVals(values)

        return status

    @staticmethod
    def readsol(filename):
        """Read a MIPCL solution file"""
        with open(filename) as f:
            content = f.readlines()
        content = [l.strip() for l in content]
        values = {}
        if not len(content):
            return (
                constants.LpStatusNotSolved,
                values,
                constants.LpSolutionNoSolutionFound,
            )
        first_line = content[0]
        if first_line == "=infeas=":
            return constants.LpStatusInfeasible, values, constants.LpSolutionInfeasible
        objective, value = first_line.split()
        # this is a workaround.
        # Not sure if it always returns this limit when unbounded.
        if abs(float(value)) >= 9.999999995e10:
            return constants.LpStatusUnbounded, values, constants.LpSolutionUnbounded
        for line in content[1:]:
            name, value = line.split()
            values[name] = float(value)
        # I'm not sure how this solver announces the optimality
        # of a solution so we assume it is integer feasible
        return constants.LpStatusOptimal, values, constants.LpSolutionIntegerFeasible