File: pulp.py

package info (click to toggle)
python-pulp 2.6.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,720 kB
  • sloc: python: 7,505; makefile: 16; sh: 16
file content (2293 lines) | stat: -rw-r--r-- 75,519 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
#! /usr/bin/env python
# PuLP : Python LP Modeler


# Copyright (c) 2002-2005, Jean-Sebastien Roy (js@jeannot.org)
# Modifications Copyright (c) 2007- Stuart Anthony Mitchell (s.mitchell@auckland.ac.nz)
# $Id: pulp.py 1791 2008-04-23 22:54:34Z smit023 $

# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:

# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""
PuLP is an LP modeler written in python. PuLP can generate MPS or LP files
and call GLPK[1], COIN CLP/CBC[2], CPLEX[3], GUROBI[4] and MOSEK[5] to solve linear
problems.

See the examples directory for examples.

The examples require at least a solver in your PATH or a shared library file.

Documentation is found on https://www.coin-or.org/PuLP/.
A comprehensive wiki can be found at https://www.coin-or.org/PuLP/

Use LpVariable() to create new variables. To create a variable 0 <= x <= 3
>>> x = LpVariable("x", 0, 3)

To create a variable 0 <= y <= 1
>>> y = LpVariable("y", 0, 1)

Use LpProblem() to create new problems. Create "myProblem"
>>> prob = LpProblem("myProblem", const.LpMinimize)

Combine variables to create expressions and constraints and add them to the
problem.
>>> prob += x + y <= 2

If you add an expression (not a constraint), it will
become the objective.
>>> prob += -4 * x + y

Choose a solver and solve the problem. ex:
>>> status = prob.solve(PULP_CBC_CMD(msg=0))

Display the status of the solution
>>> const.LpStatus[status]
'Optimal'

You can get the value of the variables using value(). ex:
>>> value(x)
2.0

Exported Classes:
    - LpProblem -- Container class for a Linear programming problem
    - LpVariable -- Variables that are added to constraints in the LP
    - LpConstraint -- A constraint of the general form
      a1x1+a2x2 ...anxn (<=, =, >=) b
    - LpConstraintVar -- Used to construct a column of the model in column-wise
      modelling

Exported Functions:
    - value() -- Finds the value of a variable or expression
    - lpSum() -- given a list of the form [a1*x1, a2x2, ..., anxn] will construct
      a linear expression to be used as a constraint or variable
    - lpDot() --given two lists of the form [a1, a2, ..., an] and
      [ x1, x2, ..., xn] will construct a linear epression to be used
      as a constraint or variable

Comments, bug reports, patches and suggestions are welcome.
https://github.com/coin-or/pulp

References:
[1] http://www.gnu.org/software/glpk/glpk.html
[2] http://www.coin-or.org/
[3] http://www.cplex.com/
[4] http://www.gurobi.com/
[5] http://www.mosek.com/
"""

import sys
import warnings
from time import time

from .apis import LpSolverDefault, PULP_CBC_CMD
from .apis.core import clock
from .utilities import value
from . import constants as const
from . import mps_lp as mpslp

try:
    from collections.abc import Iterable
except ImportError:
    # python 2.7 compatible
    from collections import Iterable

import logging

log = logging.getLogger(__name__)

try:  # allow Python 2/3 compatibility
    maketrans = str.maketrans
except AttributeError:
    from string import maketrans

_DICT_TYPE = dict

if sys.platform not in ["cli"]:
    # iron python does not like an OrderedDict
    try:
        from odict import OrderedDict

        _DICT_TYPE = OrderedDict
    except ImportError:
        pass
    try:
        # python 2.7 or 3.1
        from collections import OrderedDict

        _DICT_TYPE = OrderedDict
    except ImportError:
        pass

try:
    import ujson as json
except ImportError:
    import json

import re


class LpElement(object):
    """Base class for LpVariable and LpConstraintVar"""

    # To remove illegal characters from the names
    illegal_chars = "-+[] ->/"
    expression = re.compile("[{}]".format(re.escape(illegal_chars)))
    trans = maketrans(illegal_chars, "________")

    def setName(self, name):
        if name:
            if self.expression.match(name):
                warnings.warn(
                    "The name {} has illegal characters that will be replaced by _".format(
                        name
                    )
                )
            self.__name = str(name).translate(self.trans)
        else:
            self.__name = None

    def getName(self):
        return self.__name

    name = property(fget=getName, fset=setName)

    def __init__(self, name):
        self.name = name
        # self.hash MUST be different for each variable
        # else dict() will call the comparison operators that are overloaded
        self.hash = id(self)
        self.modified = True

    def __hash__(self):
        return self.hash

    def __str__(self):
        return self.name

    def __repr__(self):
        return self.name

    def __neg__(self):
        return -LpAffineExpression(self)

    def __pos__(self):
        return self

    def __bool__(self):
        return 1

    def __add__(self, other):
        return LpAffineExpression(self) + other

    def __radd__(self, other):
        return LpAffineExpression(self) + other

    def __sub__(self, other):
        return LpAffineExpression(self) - other

    def __rsub__(self, other):
        return other - LpAffineExpression(self)

    def __mul__(self, other):
        return LpAffineExpression(self) * other

    def __rmul__(self, other):
        return LpAffineExpression(self) * other

    def __div__(self, other):
        return LpAffineExpression(self) / other

    def __rdiv__(self, other):
        raise TypeError("Expressions cannot be divided by a variable")

    def __le__(self, other):
        return LpAffineExpression(self) <= other

    def __ge__(self, other):
        return LpAffineExpression(self) >= other

    def __eq__(self, other):
        return LpAffineExpression(self) == other

    def __ne__(self, other):
        if isinstance(other, LpVariable):
            return self.name is not other.name
        elif isinstance(other, LpAffineExpression):
            if other.isAtomic():
                return self is not other.atom()
            else:
                return 1
        else:
            return 1


class LpVariable(LpElement):
    """
    This class models an LP Variable with the specified associated parameters

    :param name: The name of the variable used in the output .lp file
    :param lowBound: The lower bound on this variable's range.
        Default is negative infinity
    :param upBound: The upper bound on this variable's range.
        Default is positive infinity
    :param cat: The category this variable is in, Integer, Binary or
        Continuous(default)
    :param e: Used for column based modelling: relates to the variable's
        existence in the objective function and constraints
    """

    def __init__(
        self, name, lowBound=None, upBound=None, cat=const.LpContinuous, e=None
    ):
        LpElement.__init__(self, name)
        self._lowbound_original = self.lowBound = lowBound
        self._upbound_original = self.upBound = upBound
        self.cat = cat
        self.varValue = None
        self.dj = None
        if cat == const.LpBinary:
            self.lowBound = 0
            self.upBound = 1
            self.cat = const.LpInteger
        # Code to add a variable to constraints for column based
        # modelling.
        if e:
            self.add_expression(e)

    def toDict(self):
        """
        Exports a variable into a dictionary with its relevant information

        :return: a dictionary with the variable information
        :rtype: dict
        """
        return dict(
            lowBound=self.lowBound,
            upBound=self.upBound,
            cat=self.cat,
            varValue=self.varValue,
            dj=self.dj,
            name=self.name,
        )

    to_dict = toDict

    @classmethod
    def fromDict(cls, dj=None, varValue=None, **kwargs):
        """
        Initializes a variable object from information that comes from a dictionary (kwargs)

        :param dj: shadow price of the variable
        :param float varValue: the value to set the variable
        :param kwargs: arguments to initialize the variable
        :return: a :py:class:`LpVariable`
        :rtype: :LpVariable
        """
        var = cls(**kwargs)
        var.dj = dj
        var.varValue = varValue
        return var

    from_dict = fromDict

    def add_expression(self, e):
        self.expression = e
        self.addVariableToConstraints(e)

    @classmethod
    def matrix(
        cls,
        name,
        indices=None,  # required param. enforced within function for backwards compatibility
        lowBound=None,
        upBound=None,
        cat=const.LpContinuous,
        indexStart=[],
        indexs=None,
    ):

        # Backwards Compatiblity with Deprecation Warning for indexs
        if indices is not None and indexs is not None:
            raise TypeError(
                "Both 'indices' and 'indexs' provided to LpVariable.matrix.  Use one only, preferably 'indices'."
            )
        elif indices is not None:
            pass
        elif indexs is not None:
            warnings.warn(
                "'indexs' is deprecated; use 'indices'.", DeprecationWarning, 2
            )
            indices = indexs
        else:
            raise TypeError(
                "LpVariable.matrix missing both 'indices' and deprecated 'indexs' arguments."
            )

        if not isinstance(indices, tuple):
            indices = (indices,)
        if "%" not in name:
            name += "_%s" * len(indices)

        index = indices[0]
        indices = indices[1:]
        if len(indices) == 0:
            return [
                LpVariable(name % tuple(indexStart + [i]), lowBound, upBound, cat)
                for i in index
            ]
        else:
            return [
                LpVariable.matrix(
                    name, indices, lowBound, upBound, cat, indexStart + [i]
                )
                for i in index
            ]

    @classmethod
    def dicts(
        cls,
        name,
        indices=None,  # required param. enforced within function for backwards compatibility
        lowBound=None,
        upBound=None,
        cat=const.LpContinuous,
        indexStart=[],
        indexs=None,
    ):
        """
        This function creates a dictionary of :py:class:`LpVariable` with the specified associated parameters.

        :param name: The prefix to the name of each LP variable created
        :param indices: A list of strings of the keys to the dictionary of LP
            variables, and the main part of the variable name itself
        :param lowBound: The lower bound on these variables' range. Default is
            negative infinity
        :param upBound: The upper bound on these variables' range. Default is
            positive infinity
        :param cat: The category these variables are in, Integer or
            Continuous(default)
        :param indexs: (deprecated) Replaced with `indices` parameter

        :return: A dictionary of :py:class:`LpVariable`
        """

        # Backwards Compatiblity with Deprecation Warning for indexs
        if indices is not None and indexs is not None:
            raise TypeError(
                "Both 'indices' and 'indexs' provided to LpVariable.dicts.  Use one only, preferably 'indices'."
            )
        elif indices is not None:
            pass
        elif indexs is not None:
            warnings.warn(
                "'indexs' is deprecated; use 'indices'.", DeprecationWarning, 2
            )
            indices = indexs
        else:
            raise TypeError(
                "LpVariable.dicts missing both 'indices' and deprecated 'indexs' arguments."
            )

        if not isinstance(indices, tuple):
            indices = (indices,)
        if "%" not in name:
            name += "_%s" * len(indices)

        index = indices[0]
        indices = indices[1:]
        d = {}
        if len(indices) == 0:
            for i in index:
                d[i] = LpVariable(
                    name % tuple(indexStart + [str(i)]), lowBound, upBound, cat
                )
        else:
            for i in index:
                d[i] = LpVariable.dicts(
                    name, indices, lowBound, upBound, cat, indexStart + [i]
                )
        return d

    @classmethod
    def dict(cls, name, indices, lowBound=None, upBound=None, cat=const.LpContinuous):
        if not isinstance(indices, tuple):
            indices = (indices,)
        if "%" not in name:
            name += "_%s" * len(indices)

        lists = indices

        if len(indices) > 1:
            # Cartesian product
            res = []
            while len(lists):
                first = lists[-1]
                nres = []
                if res:
                    if first:
                        for f in first:
                            nres.extend([[f] + r for r in res])
                    else:
                        nres = res
                    res = nres
                else:
                    res = [[f] for f in first]
                lists = lists[:-1]
            index = [tuple(r) for r in res]
        elif len(indices) == 1:
            index = indices[0]
        else:
            return {}

        d = {}
        for i in index:
            d[i] = cls(name % i, lowBound, upBound, cat)
        return d

    def getLb(self):
        return self.lowBound

    def getUb(self):
        return self.upBound

    def bounds(self, low, up):
        self.lowBound = low
        self.upBound = up
        self.modified = True

    def positive(self):
        self.bounds(0, None)

    def value(self):
        return self.varValue

    def round(self, epsInt=1e-5, eps=1e-7):
        if self.varValue is not None:
            if (
                self.upBound != None
                and self.varValue > self.upBound
                and self.varValue <= self.upBound + eps
            ):
                self.varValue = self.upBound
            elif (
                self.lowBound != None
                and self.varValue < self.lowBound
                and self.varValue >= self.lowBound - eps
            ):
                self.varValue = self.lowBound
            if (
                self.cat == const.LpInteger
                and abs(round(self.varValue) - self.varValue) <= epsInt
            ):
                self.varValue = round(self.varValue)

    def roundedValue(self, eps=1e-5):
        if (
            self.cat == const.LpInteger
            and self.varValue != None
            and abs(self.varValue - round(self.varValue)) <= eps
        ):
            return round(self.varValue)
        else:
            return self.varValue

    def valueOrDefault(self):
        if self.varValue != None:
            return self.varValue
        elif self.lowBound != None:
            if self.upBound != None:
                if 0 >= self.lowBound and 0 <= self.upBound:
                    return 0
                else:
                    if self.lowBound >= 0:
                        return self.lowBound
                    else:
                        return self.upBound
            else:
                if 0 >= self.lowBound:
                    return 0
                else:
                    return self.lowBound
        elif self.upBound != None:
            if 0 <= self.upBound:
                return 0
            else:
                return self.upBound
        else:
            return 0

    def valid(self, eps):
        if self.name == "__dummy" and self.varValue is None:
            return True
        if self.varValue is None:
            return False
        if self.upBound is not None and self.varValue > self.upBound + eps:
            return False
        if self.lowBound is not None and self.varValue < self.lowBound - eps:
            return False
        if (
            self.cat == const.LpInteger
            and abs(round(self.varValue) - self.varValue) > eps
        ):
            return False
        return True

    def infeasibilityGap(self, mip=1):
        if self.varValue == None:
            raise ValueError("variable value is None")
        if self.upBound != None and self.varValue > self.upBound:
            return self.varValue - self.upBound
        if self.lowBound != None and self.varValue < self.lowBound:
            return self.varValue - self.lowBound
        if (
            mip
            and self.cat == const.LpInteger
            and round(self.varValue) - self.varValue != 0
        ):
            return round(self.varValue) - self.varValue
        return 0

    def isBinary(self):
        return self.cat == const.LpInteger and self.lowBound == 0 and self.upBound == 1

    def isInteger(self):
        return self.cat == const.LpInteger

    def isFree(self):
        return self.lowBound is None and self.upBound is None

    def isConstant(self):
        return self.lowBound is not None and self.upBound == self.lowBound

    def isPositive(self):
        return self.lowBound == 0 and self.upBound is None

    def asCplexLpVariable(self):
        if self.isFree():
            return self.name + " free"
        if self.isConstant():
            return self.name + " = %.12g" % self.lowBound
        if self.lowBound == None:
            s = "-inf <= "
        # Note: XPRESS and CPLEX do not interpret integer variables without
        # explicit bounds
        elif self.lowBound == 0 and self.cat == const.LpContinuous:
            s = ""
        else:
            s = "%.12g <= " % self.lowBound
        s += self.name
        if self.upBound is not None:
            s += " <= %.12g" % self.upBound
        return s

    def asCplexLpAffineExpression(self, name, constant=1):
        return LpAffineExpression(self).asCplexLpAffineExpression(name, constant)

    def __ne__(self, other):
        if isinstance(other, LpElement):
            return self.name is not other.name
        elif isinstance(other, LpAffineExpression):
            if other.isAtomic():
                return self is not other.atom()
            else:
                return 1
        else:
            return 1

    def addVariableToConstraints(self, e):
        """adds a variable to the constraints indicated by
        the LpConstraintVars in e
        """
        for constraint, coeff in e.items():
            constraint.addVariable(self, coeff)

    def setInitialValue(self, val, check=True):
        """
        sets the initial value of the variable to `val`
        May be used for warmStart a solver, if supported by the solver

        :param float val: value to set to variable
        :param bool check: if True, we check if the value fits inside the variable bounds
        :return: True if the value was set
        :raises ValueError: if check=True and the value does not fit inside the bounds
        """
        lb = self.lowBound
        ub = self.upBound
        config = [
            ("smaller", "lowBound", lb, lambda: val < lb),
            ("greater", "upBound", ub, lambda: val > ub),
        ]

        for rel, bound_name, bound_value, condition in config:
            if bound_value is not None and condition():
                if not check:
                    return False
                raise ValueError(
                    "In variable {}, initial value {} is {} than {} {}".format(
                        self.name, val, rel, bound_name, bound_value
                    )
                )
        self.varValue = val
        return True

    def fixValue(self):
        """
        changes lower bound and upper bound to the initial value if exists.
        :return: None
        """
        self._lowbound_unfix = self.lowBound
        self._upbound_unfix = self.upBound
        val = self.varValue
        if val is not None:
            self.bounds(val, val)

    def isFixed(self):
        """

        :return: True if upBound and lowBound are the same
        :rtype: bool
        """
        return self.isConstant()

    def unfixValue(self):
        self.bounds(self._lowbound_original, self._upbound_original)


class LpAffineExpression(_DICT_TYPE):
    """
    A linear combination of :class:`LpVariables<LpVariable>`.
    Can be initialised with the following:

    #.   e = None: an empty Expression
    #.   e = dict: gives an expression with the values being the coefficients of the keys (order of terms is undetermined)
    #.   e = list or generator of 2-tuples: equivalent to dict.items()
    #.   e = LpElement: an expression of length 1 with the coefficient 1
    #.   e = other: the constant is initialised as e

    Examples:

       >>> f=LpAffineExpression(LpElement('x'))
       >>> f
       1*x + 0
       >>> x_name = ['x_0', 'x_1', 'x_2']
       >>> x = [LpVariable(x_name[i], lowBound = 0, upBound = 10) for i in range(3) ]
       >>> c = LpAffineExpression([ (x[0],1), (x[1],-3), (x[2],4)])
       >>> c
       1*x_0 + -3*x_1 + 4*x_2 + 0
    """

    # to remove illegal characters from the names
    trans = maketrans("-+[] ", "_____")

    def setName(self, name):
        if name:
            self.__name = str(name).translate(self.trans)
        else:
            self.__name = None

    def getName(self):
        return self.__name

    name = property(fget=getName, fset=setName)

    def __init__(self, e=None, constant=0, name=None):
        self.name = name
        # TODO remove isinstance usage
        if e is None:
            e = {}
        if isinstance(e, LpAffineExpression):
            # Will not copy the name
            self.constant = e.constant
            super(LpAffineExpression, self).__init__(list(e.items()))
        elif isinstance(e, dict):
            self.constant = constant
            super(LpAffineExpression, self).__init__(list(e.items()))
        elif isinstance(e, Iterable):
            self.constant = constant
            super(LpAffineExpression, self).__init__(e)
        elif isinstance(e, LpElement):
            self.constant = 0
            super(LpAffineExpression, self).__init__([(e, 1)])
        else:
            self.constant = e
            super(LpAffineExpression, self).__init__()

    # Proxy functions for variables

    def isAtomic(self):
        return len(self) == 1 and self.constant == 0 and list(self.values())[0] == 1

    def isNumericalConstant(self):
        return len(self) == 0

    def atom(self):
        return list(self.keys())[0]

    # Functions on expressions

    def __bool__(self):
        return (float(self.constant) != 0.0) or (len(self) > 0)

    def value(self):
        s = self.constant
        for v, x in self.items():
            if v.varValue is None:
                return None
            s += v.varValue * x
        return s

    def valueOrDefault(self):
        s = self.constant
        for v, x in self.items():
            s += v.valueOrDefault() * x
        return s

    def addterm(self, key, value):
        y = self.get(key, 0)
        if y:
            y += value
            self[key] = y
        else:
            self[key] = value

    def emptyCopy(self):
        return LpAffineExpression()

    def copy(self):
        """Make a copy of self except the name which is reset"""
        # Will not copy the name
        return LpAffineExpression(self)

    def __str__(self, constant=1):
        s = ""
        for v in self.sorted_keys():
            val = self[v]
            if val < 0:
                if s != "":
                    s += " - "
                else:
                    s += "-"
                val = -val
            elif s != "":
                s += " + "
            if val == 1:
                s += str(v)
            else:
                s += str(val) + "*" + str(v)
        if constant:
            if s == "":
                s = str(self.constant)
            else:
                if self.constant < 0:
                    s += " - " + str(-self.constant)
                elif self.constant > 0:
                    s += " + " + str(self.constant)
        elif s == "":
            s = "0"
        return s

    def sorted_keys(self):
        """
        returns the list of keys sorted by name
        """
        result = [(v.name, v) for v in self.keys()]
        result.sort()
        result = [v for _, v in result]
        return result

    def __repr__(self):
        l = [str(self[v]) + "*" + str(v) for v in self.sorted_keys()]
        l.append(str(self.constant))
        s = " + ".join(l)
        return s

    @staticmethod
    def _count_characters(line):
        # counts the characters in a list of strings
        return sum(len(t) for t in line)

    def asCplexVariablesOnly(self, name):
        """
        helper for asCplexLpAffineExpression
        """
        result = []
        line = ["%s:" % name]
        notFirst = 0
        variables = self.sorted_keys()
        for v in variables:
            val = self[v]
            if val < 0:
                sign = " -"
                val = -val
            elif notFirst:
                sign = " +"
            else:
                sign = ""
            notFirst = 1
            if val == 1:
                term = "%s %s" % (sign, v.name)
            else:
                # adding zero to val to remove instances of negative zero
                term = "%s %.12g %s" % (sign, val + 0, v.name)

            if self._count_characters(line) + len(term) > const.LpCplexLPLineSize:
                result += ["".join(line)]
                line = [term]
            else:
                line += [term]
        return result, line

    def asCplexLpAffineExpression(self, name, constant=1):
        """
        returns a string that represents the Affine Expression in lp format
        """
        # refactored to use a list for speed in iron python
        result, line = self.asCplexVariablesOnly(name)
        if not self:
            term = " %s" % self.constant
        else:
            term = ""
            if constant:
                if self.constant < 0:
                    term = " - %s" % (-self.constant)
                elif self.constant > 0:
                    term = " + %s" % self.constant
        if self._count_characters(line) + len(term) > const.LpCplexLPLineSize:
            result += ["".join(line)]
            line = [term]
        else:
            line += [term]
        result += ["".join(line)]
        result = "%s\n" % "\n".join(result)
        return result

    def addInPlace(self, other):
        if isinstance(other, int) and (other == 0):
            return self
        if other is None:
            return self
        if isinstance(other, LpElement):
            self.addterm(other, 1)
        elif isinstance(other, LpAffineExpression):
            self.constant += other.constant
            for v, x in other.items():
                self.addterm(v, x)
        elif isinstance(other, dict):
            for e in other.values():
                self.addInPlace(e)
        elif isinstance(other, list) or isinstance(other, Iterable):
            for e in other:
                self.addInPlace(e)
        else:
            self.constant += other
        return self

    def subInPlace(self, other):
        if isinstance(other, int) and (other == 0):
            return self
        if other is None:
            return self
        if isinstance(other, LpElement):
            self.addterm(other, -1)
        elif isinstance(other, LpAffineExpression):
            self.constant -= other.constant
            for v, x in other.items():
                self.addterm(v, -x)
        elif isinstance(other, dict):
            for e in other.values():
                self.subInPlace(e)
        elif isinstance(other, list) or isinstance(other, Iterable):
            for e in other:
                self.subInPlace(e)
        else:
            self.constant -= other
        return self

    def __neg__(self):
        e = self.emptyCopy()
        e.constant = -self.constant
        for v, x in self.items():
            e[v] = -x
        return e

    def __pos__(self):
        return self

    def __add__(self, other):
        return self.copy().addInPlace(other)

    def __radd__(self, other):
        return self.copy().addInPlace(other)

    def __iadd__(self, other):
        return self.addInPlace(other)

    def __sub__(self, other):
        return self.copy().subInPlace(other)

    def __rsub__(self, other):
        return (-self).addInPlace(other)

    def __isub__(self, other):
        return (self).subInPlace(other)

    def __mul__(self, other):
        e = self.emptyCopy()
        if isinstance(other, LpAffineExpression):
            e.constant = self.constant * other.constant
            if len(other):
                if len(self):
                    raise TypeError("Non-constant expressions cannot be multiplied")
                else:
                    c = self.constant
                    if c != 0:
                        for v, x in other.items():
                            e[v] = c * x
            else:
                c = other.constant
                if c != 0:
                    for v, x in self.items():
                        e[v] = c * x
        elif isinstance(other, LpVariable):
            return self * LpAffineExpression(other)
        else:
            if other != 0:
                e.constant = self.constant * other
                for v, x in self.items():
                    e[v] = other * x
        return e

    def __rmul__(self, other):
        return self * other

    def __div__(self, other):
        if isinstance(other, LpAffineExpression) or isinstance(other, LpVariable):
            if len(other):
                raise TypeError(
                    "Expressions cannot be divided by a non-constant expression"
                )
            other = other.constant
        e = self.emptyCopy()
        e.constant = self.constant / other
        for v, x in self.items():
            e[v] = x / other
        return e

    def __truediv__(self, other):
        if isinstance(other, LpAffineExpression) or isinstance(other, LpVariable):
            if len(other):
                raise TypeError(
                    "Expressions cannot be divided by a non-constant expression"
                )
            other = other.constant
        e = self.emptyCopy()
        e.constant = self.constant / other
        for v, x in self.items():
            e[v] = x / other
        return e

    def __rdiv__(self, other):
        e = self.emptyCopy()
        if len(self):
            raise TypeError(
                "Expressions cannot be divided by a non-constant expression"
            )
        c = self.constant
        if isinstance(other, LpAffineExpression):
            e.constant = other.constant / c
            for v, x in other.items():
                e[v] = x / c
        else:
            e.constant = other / c
        return e

    def __le__(self, other):
        return LpConstraint(self - other, const.LpConstraintLE)

    def __ge__(self, other):
        return LpConstraint(self - other, const.LpConstraintGE)

    def __eq__(self, other):
        return LpConstraint(self - other, const.LpConstraintEQ)

    def toDict(self):
        """
        exports the :py:class:`LpAffineExpression` into a list of dictionaries with the coefficients
        it does not export the constant

        :return: list of dictionaries with the coefficients
        :rtype: list
        """
        return [dict(name=k.name, value=v) for k, v in self.items()]

    to_dict = toDict


class LpConstraint(LpAffineExpression):
    """An LP constraint"""

    def __init__(self, e=None, sense=const.LpConstraintEQ, name=None, rhs=None):
        """
        :param e: an instance of :class:`LpAffineExpression`
        :param sense: one of :data:`~pulp.const.LpConstraintEQ`, :data:`~pulp.const.LpConstraintGE`, :data:`~pulp.const.LpConstraintLE` (0, 1, -1 respectively)
        :param name: identifying string
        :param rhs: numerical value of constraint target
        """
        LpAffineExpression.__init__(self, e, name=name)
        if rhs is not None:
            self.constant -= rhs
        self.sense = sense
        self.pi = None
        self.slack = None
        self.modified = True

    def getLb(self):
        if (self.sense == const.LpConstraintGE) or (self.sense == const.LpConstraintEQ):
            return -self.constant
        else:
            return None

    def getUb(self):
        if (self.sense == const.LpConstraintLE) or (self.sense == const.LpConstraintEQ):
            return -self.constant
        else:
            return None

    def __str__(self):
        s = LpAffineExpression.__str__(self, 0)
        if self.sense is not None:
            s += " " + const.LpConstraintSenses[self.sense] + " " + str(-self.constant)
        return s

    def asCplexLpConstraint(self, name):
        """
        Returns a constraint as a string
        """
        result, line = self.asCplexVariablesOnly(name)
        if not list(self.keys()):
            line += ["0"]
        c = -self.constant
        if c == 0:
            c = 0  # Supress sign
        term = " %s %.12g" % (const.LpConstraintSenses[self.sense], c)
        if self._count_characters(line) + len(term) > const.LpCplexLPLineSize:
            result += ["".join(line)]
            line = [term]
        else:
            line += [term]
        result += ["".join(line)]
        result = "%s\n" % "\n".join(result)
        return result

    def changeRHS(self, RHS):
        """
        alters the RHS of a constraint so that it can be modified in a resolve
        """
        self.constant = -RHS
        self.modified = True

    def __repr__(self):
        s = LpAffineExpression.__repr__(self)
        if self.sense is not None:
            s += " " + const.LpConstraintSenses[self.sense] + " 0"
        return s

    def copy(self):
        """Make a copy of self"""
        return LpConstraint(self, self.sense)

    def emptyCopy(self):
        return LpConstraint(sense=self.sense)

    def addInPlace(self, other):
        if isinstance(other, LpConstraint):
            if self.sense * other.sense >= 0:
                LpAffineExpression.addInPlace(self, other)
                self.sense |= other.sense
            else:
                LpAffineExpression.subInPlace(self, other)
                self.sense |= -other.sense
        elif isinstance(other, list):
            for e in other:
                self.addInPlace(e)
        else:
            LpAffineExpression.addInPlace(self, other)
            # raise TypeError, "Constraints and Expressions cannot be added"
        return self

    def subInPlace(self, other):
        if isinstance(other, LpConstraint):
            if self.sense * other.sense <= 0:
                LpAffineExpression.subInPlace(self, other)
                self.sense |= -other.sense
            else:
                LpAffineExpression.addInPlace(self, other)
                self.sense |= other.sense
        elif isinstance(other, list):
            for e in other:
                self.subInPlace(e)
        else:
            LpAffineExpression.subInPlace(self, other)
            # raise TypeError, "Constraints and Expressions cannot be added"
        return self

    def __neg__(self):
        c = LpAffineExpression.__neg__(self)
        c.sense = -c.sense
        return c

    def __add__(self, other):
        return self.copy().addInPlace(other)

    def __radd__(self, other):
        return self.copy().addInPlace(other)

    def __sub__(self, other):
        return self.copy().subInPlace(other)

    def __rsub__(self, other):
        return (-self).addInPlace(other)

    def __mul__(self, other):
        if isinstance(other, LpConstraint):
            c = LpAffineExpression.__mul__(self, other)
            if c.sense == 0:
                c.sense = other.sense
            elif other.sense != 0:
                c.sense *= other.sense
            return c
        else:
            return LpAffineExpression.__mul__(self, other)

    def __rmul__(self, other):
        return self * other

    def __div__(self, other):
        if isinstance(other, LpConstraint):
            c = LpAffineExpression.__div__(self, other)
            if c.sense == 0:
                c.sense = other.sense
            elif other.sense != 0:
                c.sense *= other.sense
            return c
        else:
            return LpAffineExpression.__mul__(self, other)

    def __rdiv__(self, other):
        if isinstance(other, LpConstraint):
            c = LpAffineExpression.__rdiv__(self, other)
            if c.sense == 0:
                c.sense = other.sense
            elif other.sense != 0:
                c.sense *= other.sense
            return c
        else:
            return LpAffineExpression.__mul__(self, other)

    def valid(self, eps=0):
        val = self.value()
        if self.sense == const.LpConstraintEQ:
            return abs(val) <= eps
        else:
            return val * self.sense >= -eps

    def makeElasticSubProblem(self, *args, **kwargs):
        """
        Builds an elastic subproblem by adding variables to a hard constraint

        uses FixedElasticSubProblem
        """
        return FixedElasticSubProblem(self, *args, **kwargs)

    def toDict(self):
        """
        exports constraint information into a dictionary

        :return: dictionary with all the constraint information
        """
        return dict(
            sense=self.sense,
            pi=self.pi,
            constant=self.constant,
            name=self.name,
            coefficients=LpAffineExpression.toDict(self),
        )

    @classmethod
    def fromDict(cls, _dict):
        """
        Initializes a constraint object from a dictionary with necessary information

        :param dict _dict: dictionary with data
        :return: a new :py:class:`LpConstraint`
        """
        const = cls(
            e=_dict["coefficients"],
            rhs=-_dict["constant"],
            name=_dict["name"],
            sense=_dict["sense"],
        )
        const.pi = _dict["pi"]
        return const

    from_dict = fromDict


class LpFractionConstraint(LpConstraint):
    """
    Creates a constraint that enforces a fraction requirement a/b = c
    """

    def __init__(
        self,
        numerator,
        denominator=None,
        sense=const.LpConstraintEQ,
        RHS=1.0,
        name=None,
        complement=None,
    ):
        """
        creates a fraction Constraint to model constraints of
        the nature
        numerator/denominator {==, >=, <=} RHS
        numerator/(numerator + complement) {==, >=, <=} RHS

        :param numerator: the top of the fraction
        :param denominator: as described above
        :param sense: the sense of the relation of the constraint
        :param RHS: the target fraction value
        :param complement: as described above
        """
        self.numerator = numerator
        if denominator is None and complement is not None:
            self.complement = complement
            self.denominator = numerator + complement
        elif denominator is not None and complement is None:
            self.denominator = denominator
            self.complement = denominator - numerator
        else:
            self.denominator = denominator
            self.complement = complement
        lhs = self.numerator - RHS * self.denominator
        LpConstraint.__init__(self, lhs, sense=sense, rhs=0, name=name)
        self.RHS = RHS

    def findLHSValue(self):
        """
        Determines the value of the fraction in the constraint after solution
        """
        if abs(value(self.denominator)) >= const.EPS:
            return value(self.numerator) / value(self.denominator)
        else:
            if abs(value(self.numerator)) <= const.EPS:
                # zero divided by zero will return 1
                return 1.0
            else:
                raise ZeroDivisionError

    def makeElasticSubProblem(self, *args, **kwargs):
        """
        Builds an elastic subproblem by adding variables and splitting the
        hard constraint

        uses FractionElasticSubProblem
        """
        return FractionElasticSubProblem(self, *args, **kwargs)


class LpConstraintVar(LpElement):
    """A Constraint that can be treated as a variable when constructing
    a LpProblem by columns
    """

    def __init__(self, name=None, sense=None, rhs=None, e=None):
        LpElement.__init__(self, name)
        self.constraint = LpConstraint(name=self.name, sense=sense, rhs=rhs, e=e)

    def addVariable(self, var, coeff):
        """
        Adds a variable to the constraint with the
        activity coeff
        """
        self.constraint.addterm(var, coeff)

    def value(self):
        return self.constraint.value()


class LpProblem(object):
    """An LP Problem"""

    def __init__(self, name="NoName", sense=const.LpMinimize):
        """
        Creates an LP Problem

        This function creates a new LP Problem  with the specified associated parameters

        :param name: name of the problem used in the output .lp file
        :param sense: of the LP problem objective.  \
                Either :data:`~pulp.const.LpMinimize` (default) \
                or :data:`~pulp.const.LpMaximize`.
        :return: An LP Problem
        """
        if " " in name:
            warnings.warn("Spaces are not permitted in the name. Converted to '_'")
            name = name.replace(" ", "_")
        self.objective = None
        self.constraints = _DICT_TYPE()
        self.name = name
        self.sense = sense
        self.sos1 = {}
        self.sos2 = {}
        self.status = const.LpStatusNotSolved
        self.sol_status = const.LpSolutionNoSolutionFound
        self.noOverlap = 1
        self.solver = None
        self.modifiedVariables = []
        self.modifiedConstraints = []
        self.resolveOK = False
        self._variables = []
        self._variable_ids = {}  # old school using dict.keys() for a set
        self.dummyVar = None
        self.solutionTime = 0
        self.solutionCpuTime = 0

        # locals
        self.lastUnused = 0

    def __repr__(self):
        s = self.name + ":\n"
        if self.sense == 1:
            s += "MINIMIZE\n"
        else:
            s += "MAXIMIZE\n"
        s += repr(self.objective) + "\n"

        if self.constraints:
            s += "SUBJECT TO\n"
            for n, c in self.constraints.items():
                s += c.asCplexLpConstraint(n) + "\n"
        s += "VARIABLES\n"
        for v in self.variables():
            s += v.asCplexLpVariable() + " " + const.LpCategories[v.cat] + "\n"
        return s

    def __getstate__(self):
        # Remove transient data prior to pickling.
        state = self.__dict__.copy()
        del state["_variable_ids"]
        return state

    def __setstate__(self, state):
        # Update transient data prior to unpickling.
        self.__dict__.update(state)
        self._variable_ids = {}
        for v in self._variables:
            self._variable_ids[v.hash] = v

    def copy(self):
        """Make a copy of self. Expressions are copied by reference"""
        lpcopy = LpProblem(name=self.name, sense=self.sense)
        lpcopy.objective = self.objective
        lpcopy.constraints = self.constraints.copy()
        lpcopy.sos1 = self.sos1.copy()
        lpcopy.sos2 = self.sos2.copy()
        return lpcopy

    def deepcopy(self):
        """Make a copy of self. Expressions are copied by value"""
        lpcopy = LpProblem(name=self.name, sense=self.sense)
        if self.objective is not None:
            lpcopy.objective = self.objective.copy()
        lpcopy.constraints = {}
        for k, v in self.constraints.items():
            lpcopy.constraints[k] = v.copy()
        lpcopy.sos1 = self.sos1.copy()
        lpcopy.sos2 = self.sos2.copy()
        return lpcopy

    def toDict(self):
        """
        creates a dictionary from the model with as much data as possible.
        It replaces variables by variable names.
        So it requires to have unique names for variables.

        :return: dictionary with model data
        :rtype: dict
        """
        try:
            self.checkDuplicateVars()
        except const.PulpError:
            raise const.PulpError(
                "Duplicated names found in variables:\nto export the model, variable names need to be unique"
            )
        self.fixObjective()
        variables = self.variables()
        return dict(
            objective=dict(
                name=self.objective.name, coefficients=self.objective.toDict()
            ),
            constraints=[v.toDict() for v in self.constraints.values()],
            variables=[v.toDict() for v in variables],
            parameters=dict(
                name=self.name,
                sense=self.sense,
                status=self.status,
                sol_status=self.sol_status,
            ),
            sos1=list(self.sos1.values()),
            sos2=list(self.sos2.values()),
        )

    to_dict = toDict

    @classmethod
    def fromDict(cls, _dict):
        """
        Takes a dictionary with all necessary information to build a model.
        And returns a dictionary of variables and a problem object

        :param _dict: dictionary with the model stored
        :return: a tuple with a dictionary of variables and a :py:class:`LpProblem`
        """

        # we instantiate the problem
        params = _dict["parameters"]
        pb_params = {"name", "sense"}
        args = {k: params[k] for k in pb_params}
        pb = cls(**args)
        pb.status = params["status"]
        pb.sol_status = params["sol_status"]

        # recreate the variables.
        var = {v["name"]: LpVariable.fromDict(**v) for v in _dict["variables"]}

        # objective function.
        # we change the names for the objects:
        obj_e = {var[v["name"]]: v["value"] for v in _dict["objective"]["coefficients"]}
        pb += LpAffineExpression(e=obj_e, name=_dict["objective"]["name"])

        # constraints
        # we change the names for the objects:
        def edit_const(const):
            const = dict(const)
            const["coefficients"] = {
                var[v["name"]]: v["value"] for v in const["coefficients"]
            }
            return const

        constraints = [edit_const(v) for v in _dict["constraints"]]
        for c in constraints:
            pb += LpConstraint.fromDict(c)

        # last, parameters, other options
        list_to_dict = lambda v: {k: v for k, v in enumerate(v)}
        pb.sos1 = list_to_dict(_dict["sos1"])
        pb.sos2 = list_to_dict(_dict["sos2"])

        return var, pb

    from_dict = fromDict

    def toJson(self, filename, *args, **kwargs):
        """
        Creates a json file from the LpProblem information

        :param str filename: filename to write json
        :param args: additional arguments for json function
        :param kwargs: additional keyword arguments for json function
        :return: None
        """
        with open(filename, "w") as f:
            json.dump(self.toDict(), f, *args, **kwargs)

    to_json = toJson

    @classmethod
    def fromJson(cls, filename):
        """
        Creates a new Lp Problem from a json file with information

        :param str filename: json file name
        :return: a tuple with a dictionary of variables and an LpProblem
        :rtype: (dict, :py:class:`LpProblem`)
        """
        with open(filename, "r") as f:
            data = json.load(f)
        return cls.fromDict(data)

    from_json = fromJson

    @classmethod
    def fromMPS(cls, filename, sense=const.LpMinimize, **kwargs):
        data = mpslp.readMPS(filename, sense=sense, **kwargs)
        return cls.fromDict(data)

    def normalisedNames(self):
        constraintsNames = {k: "C%07d" % i for i, k in enumerate(self.constraints)}
        _variables = self.variables()
        variablesNames = {k.name: "X%07d" % i for i, k in enumerate(_variables)}
        return constraintsNames, variablesNames, "OBJ"

    def isMIP(self):
        for v in self.variables():
            if v.cat == const.LpInteger:
                return 1
        return 0

    def roundSolution(self, epsInt=1e-5, eps=1e-7):
        """
        Rounds the lp variables

        Inputs:
            - none

        Side Effects:
            - The lp variables are rounded
        """
        for v in self.variables():
            v.round(epsInt, eps)

    def unusedConstraintName(self):
        self.lastUnused += 1
        while 1:
            s = "_C%d" % self.lastUnused
            if s not in self.constraints:
                break
            self.lastUnused += 1
        return s

    def valid(self, eps=0):
        for v in self.variables():
            if not v.valid(eps):
                return False
        for c in self.constraints.values():
            if not c.valid(eps):
                return False
        else:
            return True

    def infeasibilityGap(self, mip=1):
        gap = 0
        for v in self.variables():
            gap = max(abs(v.infeasibilityGap(mip)), gap)
        for c in self.constraints.values():
            if not c.valid(0):
                gap = max(abs(c.value()), gap)
        return gap

    def addVariable(self, variable):
        """
        Adds a variable to the problem before a constraint is added

        @param variable: the variable to be added
        """
        if variable.hash not in self._variable_ids:
            self._variables.append(variable)
            self._variable_ids[variable.hash] = variable

    def addVariables(self, variables):
        """
        Adds variables to the problem before a constraint is added

        @param variables: the variables to be added
        """
        for v in variables:
            self.addVariable(v)

    def variables(self):
        """
        Returns the problem variables

        :return: A list containing the problem variables
        :rtype: (list, :py:class:`LpVariable`)
        """
        if self.objective:
            self.addVariables(list(self.objective.keys()))
        for c in self.constraints.values():
            self.addVariables(list(c.keys()))
        self._variables.sort(key=lambda v: v.name)
        return self._variables

    def variablesDict(self):
        variables = {}
        if self.objective:
            for v in self.objective:
                variables[v.name] = v
        for c in list(self.constraints.values()):
            for v in c:
                variables[v.name] = v
        return variables

    def add(self, constraint, name=None):
        self.addConstraint(constraint, name)

    def addConstraint(self, constraint, name=None):
        if not isinstance(constraint, LpConstraint):
            raise TypeError("Can only add LpConstraint objects")
        if name:
            constraint.name = name
        try:
            if constraint.name:
                name = constraint.name
            else:
                name = self.unusedConstraintName()
        except AttributeError:
            raise TypeError("Can only add LpConstraint objects")
            # removed as this test fails for empty constraints
        #        if len(constraint) == 0:
        #            if not constraint.valid():
        #                raise ValueError, "Cannot add false constraints"
        if name in self.constraints:
            if self.noOverlap:
                raise const.PulpError("overlapping constraint names: " + name)
            else:
                print("Warning: overlapping constraint names:", name)
        self.constraints[name] = constraint
        self.modifiedConstraints.append(constraint)
        self.addVariables(list(constraint.keys()))

    def setObjective(self, obj):
        """
        Sets the input variable as the objective function. Used in Columnwise Modelling

        :param obj: the objective function of type :class:`LpConstraintVar`

        Side Effects:
            - The objective function is set
        """
        if isinstance(obj, LpVariable):
            # allows the user to add a LpVariable as an objective
            obj = obj + 0.0
        try:
            obj = obj.constraint
            name = obj.name
        except AttributeError:
            name = None
        self.objective = obj
        self.objective.name = name
        self.resolveOK = False

    def __iadd__(self, other):
        if isinstance(other, tuple):
            other, name = other
        else:
            name = None
        if other is True:
            return self
        elif other is False:
            raise TypeError("A False object cannot be passed as a constraint")
        elif isinstance(other, LpConstraintVar):
            self.addConstraint(other.constraint)
        elif isinstance(other, LpConstraint):
            self.addConstraint(other, name)
        elif isinstance(other, LpAffineExpression):
            if self.objective is not None:
                warnings.warn("Overwriting previously set objective.")
            self.objective = other
            if name is not None:
                # we may keep the LpAffineExpression name
                self.objective.name = name
        elif isinstance(other, LpVariable) or isinstance(other, (int, float)):
            if self.objective is not None:
                warnings.warn("Overwriting previously set objective.")
            self.objective = LpAffineExpression(other)
            self.objective.name = name
        else:
            raise TypeError(
                "Can only add LpConstraintVar, LpConstraint, LpAffineExpression or True objects"
            )
        return self

    def extend(self, other, use_objective=True):
        """
        extends an LpProblem by adding constraints either from a dictionary
        a tuple or another LpProblem object.

        @param use_objective: determines whether the objective is imported from
        the other problem

        For dictionaries the constraints will be named with the keys
        For tuples an unique name will be generated
        For LpProblems the name of the problem will be added to the constraints
        name
        """
        if isinstance(other, dict):
            for name in other:
                self.constraints[name] = other[name]
        elif isinstance(other, LpProblem):
            for v in set(other.variables()).difference(self.variables()):
                v.name = other.name + v.name
            for name, c in other.constraints.items():
                c.name = other.name + name
                self.addConstraint(c)
            if use_objective:
                self.objective += other.objective
        else:
            for c in other:
                if isinstance(c, tuple):
                    name = c[0]
                    c = c[1]
                else:
                    name = None
                if not name:
                    name = c.name
                if not name:
                    name = self.unusedConstraintName()
                self.constraints[name] = c

    def coefficients(self, translation=None):
        coefs = []
        if translation == None:
            for c in self.constraints:
                cst = self.constraints[c]
                coefs.extend([(v.name, c, cst[v]) for v in cst])
        else:
            for c in self.constraints:
                ctr = translation[c]
                cst = self.constraints[c]
                coefs.extend([(translation[v.name], ctr, cst[v]) for v in cst])
        return coefs

    def writeMPS(self, filename, mpsSense=0, rename=0, mip=1):
        """
        Writes an mps files from the problem information

        :param str filename: name of the file to write
        :param int mpsSense:
        :param bool rename: if True, normalized names are used for variables and constraints
        :param mip: variables and variable renames
        :return:
        Side Effects:
            - The file is created
        """
        return mpslp.writeMPS(self, filename, mpsSense=mpsSense, rename=rename, mip=mip)

    def writeLP(self, filename, writeSOS=1, mip=1, max_length=100):
        """
        Write the given Lp problem to a .lp file.

        This function writes the specifications (objective function,
        constraints, variables) of the defined Lp problem to a file.

        :param str filename: the name of the file to be created.
        :return: variables
        Side Effects:
            - The file is created
        """
        return mpslp.writeLP(
            self, filename=filename, writeSOS=writeSOS, mip=mip, max_length=max_length
        )

    def checkDuplicateVars(self):
        """
        Checks if there are at least two variables with the same name
        :return: 1
        :raises `const.PulpError`: if there ar duplicates
        """
        vs = self.variables()

        repeated_names = {}
        for v in vs:
            repeated_names[v.name] = repeated_names.get(v.name, 0) + 1
        repeated_names = [
            (key, value) for key, value in list(repeated_names.items()) if value >= 2
        ]
        if repeated_names:
            raise const.PulpError("Repeated variable names:\n" + str(repeated_names))
        return 1

    def checkLengthVars(self, max_length):
        """
        Checks if variables have names smaller than `max_length`
        :param int max_length: max size for variable name
        :return:
        :raises const.PulpError: if there is at least one variable that has a long name
        """
        vs = self.variables()
        long_names = [v.name for v in vs if len(v.name) > max_length]
        if long_names:
            raise const.PulpError(
                "Variable names too long for Lp format\n" + str(long_names)
            )
        return 1

    def assignVarsVals(self, values):
        variables = self.variablesDict()
        for name in values:
            if name != "__dummy":
                variables[name].varValue = values[name]

    def assignVarsDj(self, values):
        variables = self.variablesDict()
        for name in values:
            if name != "__dummy":
                variables[name].dj = values[name]

    def assignConsPi(self, values):
        for name in values:
            try:
                self.constraints[name].pi = values[name]
            except KeyError:
                pass

    def assignConsSlack(self, values, activity=False):
        for name in values:
            try:
                if activity:
                    # reports the activity not the slack
                    self.constraints[name].slack = -1 * (
                        self.constraints[name].constant + float(values[name])
                    )
                else:
                    self.constraints[name].slack = float(values[name])
            except KeyError:
                pass

    def get_dummyVar(self):
        if self.dummyVar is None:
            self.dummyVar = LpVariable("__dummy", 0, 0)
        return self.dummyVar

    def fixObjective(self):
        if self.objective is None:
            self.objective = 0
            wasNone = 1
        else:
            wasNone = 0
        if not isinstance(self.objective, LpAffineExpression):
            self.objective = LpAffineExpression(self.objective)
        if self.objective.isNumericalConstant():
            dummyVar = self.get_dummyVar()
            self.objective += dummyVar
        else:
            dummyVar = None
        return wasNone, dummyVar

    def restoreObjective(self, wasNone, dummyVar):
        if wasNone:
            self.objective = None
        elif not dummyVar is None:
            self.objective -= dummyVar

    def solve(self, solver=None, **kwargs):
        """
        Solve the given Lp problem.

        This function changes the problem to make it suitable for solving
        then calls the solver.actualSolve() method to find the solution

        :param solver:  Optional: the specific solver to be used, defaults to the
              default solver.

        Side Effects:
            - The attributes of the problem object are changed in
              :meth:`~pulp.solver.LpSolver.actualSolve()` to reflect the Lp solution
        """

        if not (solver):
            solver = self.solver
        if not (solver):
            solver = LpSolverDefault
        wasNone, dummyVar = self.fixObjective()
        # time it
        self.startClock()
        status = solver.actualSolve(self, **kwargs)
        self.stopClock()
        self.restoreObjective(wasNone, dummyVar)
        self.solver = solver
        return status

    def startClock(self):
        "initializes properties with the current time"
        self.solutionCpuTime = -clock()
        self.solutionTime = -time()

    def stopClock(self):
        "updates time wall time and cpu time"
        self.solutionTime += time()
        self.solutionCpuTime += clock()

    def sequentialSolve(
        self, objectives, absoluteTols=None, relativeTols=None, solver=None, debug=False
    ):
        """
        Solve the given Lp problem with several objective functions.

        This function sequentially changes the objective of the problem
        and then adds the objective function as a constraint

        :param objectives: the list of objectives to be used to solve the problem
        :param absoluteTols: the list of absolute tolerances to be applied to
           the constraints should be +ve for a minimise objective
        :param relativeTols: the list of relative tolerances applied to the constraints
        :param solver: the specific solver to be used, defaults to the default solver.

        """
        # TODO Add a penalty variable to make problems elastic
        # TODO add the ability to accept different status values i.e. infeasible etc

        if not (solver):
            solver = self.solver
        if not (solver):
            solver = LpSolverDefault
        if not (absoluteTols):
            absoluteTols = [0] * len(objectives)
        if not (relativeTols):
            relativeTols = [1] * len(objectives)
        # time it
        self.startClock()
        statuses = []
        for i, (obj, absol, rel) in enumerate(
            zip(objectives, absoluteTols, relativeTols)
        ):
            self.setObjective(obj)
            status = solver.actualSolve(self)
            statuses.append(status)
            if debug:
                self.writeLP("%sSequence.lp" % i)
            if self.sense == const.LpMinimize:
                self += obj <= value(obj) * rel + absol, "%s_Sequence_Objective" % i
            elif self.sense == const.LpMaximize:
                self += obj >= value(obj) * rel + absol, "%s_Sequence_Objective" % i
        self.stopClock()
        self.solver = solver
        return statuses

    def resolve(self, solver=None, **kwargs):
        """
        resolves an Problem using the same solver as previously
        """
        if not (solver):
            solver = self.solver
        if self.resolveOK:
            return self.solver.actualResolve(self, **kwargs)
        else:
            return self.solve(solver=solver, **kwargs)

    def setSolver(self, solver=LpSolverDefault):
        """Sets the Solver for this problem useful if you are using
        resolve
        """
        self.solver = solver

    def numVariables(self):
        """

        :return: number of variables in model
        """
        return len(self._variable_ids)

    def numConstraints(self):
        """

        :return: number of constraints in model
        """
        return len(self.constraints)

    def getSense(self):
        return self.sense

    def assignStatus(self, status, sol_status=None):
        """
        Sets the status of the model after solving.
        :param status: code for the status of the model
        :param sol_status: code for the status of the solution
        :return:
        """
        if status not in const.LpStatus:
            raise const.PulpError("Invalid status code: " + str(status))

        if sol_status is not None and sol_status not in const.LpSolution:
            raise const.PulpError("Invalid solution status code: " + str(sol_status))

        self.status = status
        if sol_status is None:
            sol_status = const.LpStatusToSolution.get(
                status, const.LpSolutionNoSolutionFound
            )
        self.sol_status = sol_status
        return True


class FixedElasticSubProblem(LpProblem):
    """
    Contains the subproblem generated by converting a fixed constraint
    :math:`\\sum_{i}a_i x_i = b` into an elastic constraint.

    :param constraint: The LpConstraint that the elastic constraint is based on
    :param penalty: penalty applied for violation (+ve or -ve) of the constraints
    :param proportionFreeBound:
        the proportional bound (+ve and -ve) on
        constraint violation that is free from penalty
    :param proportionFreeBoundList: the proportional bound on \
        constraint violation that is free from penalty, expressed as a list\
        where [-ve, +ve]
    """

    def __init__(
        self,
        constraint,
        penalty=None,
        proportionFreeBound=None,
        proportionFreeBoundList=None,
    ):
        subProblemName = "%s_elastic_SubProblem" % constraint.name
        LpProblem.__init__(self, subProblemName, const.LpMinimize)
        self.objective = LpAffineExpression()
        self.constraint = constraint
        self.constant = constraint.constant
        self.RHS = -constraint.constant
        self.objective = LpAffineExpression()
        self += constraint, "_Constraint"
        # create and add these variables but disabled
        self.freeVar = LpVariable("_free_bound", upBound=0, lowBound=0)
        self.upVar = LpVariable("_pos_penalty_var", upBound=0, lowBound=0)
        self.lowVar = LpVariable("_neg_penalty_var", upBound=0, lowBound=0)
        constraint.addInPlace(self.freeVar + self.lowVar + self.upVar)
        if proportionFreeBound:
            proportionFreeBoundList = [proportionFreeBound, proportionFreeBound]
        if proportionFreeBoundList:
            # add a costless variable
            self.freeVar.upBound = abs(constraint.constant * proportionFreeBoundList[0])
            self.freeVar.lowBound = -abs(
                constraint.constant * proportionFreeBoundList[1]
            )
            # Note the reversal of the upbound and lowbound due to the nature of the
            # variable
        if penalty is not None:
            # activate these variables
            self.upVar.upBound = None
            self.lowVar.lowBound = None
            self.objective = penalty * self.upVar - penalty * self.lowVar

    def _findValue(self, attrib):
        """
        safe way to get the value of a variable that may not exist
        """
        var = getattr(self, attrib, 0)
        if var:
            if value(var) is not None:
                return value(var)
            else:
                return 0.0
        else:
            return 0.0

    def isViolated(self):
        """
        returns true if the penalty variables are non-zero
        """
        upVar = self._findValue("upVar")
        lowVar = self._findValue("lowVar")
        freeVar = self._findValue("freeVar")
        result = abs(upVar + lowVar) >= const.EPS
        if result:
            log.debug(
                "isViolated %s, upVar %s, lowVar %s, freeVar %s result %s"
                % (self.name, upVar, lowVar, freeVar, result)
            )
            log.debug(
                "isViolated value lhs %s constant %s" % (self.findLHSValue(), self.RHS)
            )
        return result

    def findDifferenceFromRHS(self):
        """
        The amount the actual value varies from the RHS (sense: LHS - RHS)
        """
        return self.findLHSValue() - self.RHS

    def findLHSValue(self):
        """
        for elastic constraints finds the LHS value of the constraint without
        the free variable and or penalty variable assumes the constant is on the
        rhs
        """
        upVar = self._findValue("upVar")
        lowVar = self._findValue("lowVar")
        freeVar = self._findValue("freeVar")
        return self.constraint.value() - self.constant - upVar - lowVar - freeVar

    def deElasticize(self):
        """de-elasticize constraint"""
        self.upVar.upBound = 0
        self.lowVar.lowBound = 0

    def reElasticize(self):
        """
        Make the Subproblem elastic again after deElasticize
        """
        self.upVar.lowBound = 0
        self.upVar.upBound = None
        self.lowVar.upBound = 0
        self.lowVar.lowBound = None

    def alterName(self, name):
        """
        Alters the name of anonymous parts of the problem

        """
        self.name = "%s_elastic_SubProblem" % name
        if hasattr(self, "freeVar"):
            self.freeVar.name = self.name + "_free_bound"
        if hasattr(self, "upVar"):
            self.upVar.name = self.name + "_pos_penalty_var"
        if hasattr(self, "lowVar"):
            self.lowVar.name = self.name + "_neg_penalty_var"


class FractionElasticSubProblem(FixedElasticSubProblem):
    """
    Contains the subproblem generated by converting a Fraction constraint
    numerator/(numerator+complement) = b
    into an elastic constraint

    :param name: The name of the elastic subproblem
    :param penalty: penalty applied for violation (+ve or -ve) of the constraints
    :param proportionFreeBound: the proportional bound (+ve and -ve) on
        constraint violation that is free from penalty
    :param proportionFreeBoundList: the proportional bound on
        constraint violation that is free from penalty, expressed as a list
        where [-ve, +ve]
    """

    def __init__(
        self,
        name,
        numerator,
        RHS,
        sense,
        complement=None,
        denominator=None,
        penalty=None,
        proportionFreeBound=None,
        proportionFreeBoundList=None,
    ):
        subProblemName = "%s_elastic_SubProblem" % name
        self.numerator = numerator
        if denominator is None and complement is not None:
            self.complement = complement
            self.denominator = numerator + complement
        elif denominator is not None and complement is None:
            self.denominator = denominator
            self.complement = denominator - numerator
        else:
            raise const.PulpError(
                "only one of denominator and complement must be specified"
            )
        self.RHS = RHS
        self.lowTarget = self.upTarget = None
        LpProblem.__init__(self, subProblemName, const.LpMinimize)
        self.freeVar = LpVariable("_free_bound", upBound=0, lowBound=0)
        self.upVar = LpVariable("_pos_penalty_var", upBound=0, lowBound=0)
        self.lowVar = LpVariable("_neg_penalty_var", upBound=0, lowBound=0)
        if proportionFreeBound:
            proportionFreeBoundList = [proportionFreeBound, proportionFreeBound]
        if proportionFreeBoundList:
            upProportionFreeBound, lowProportionFreeBound = proportionFreeBoundList
        else:
            upProportionFreeBound, lowProportionFreeBound = (0, 0)
        # create an objective
        self += LpAffineExpression()
        # There are three cases if the constraint.sense is ==, <=, >=
        if sense in [const.LpConstraintEQ, const.LpConstraintLE]:
            # create a constraint the sets the upper bound of target
            self.upTarget = RHS + upProportionFreeBound
            self.upConstraint = LpFractionConstraint(
                self.numerator,
                self.complement,
                const.LpConstraintLE,
                self.upTarget,
                denominator=self.denominator,
            )
            if penalty is not None:
                self.lowVar.lowBound = None
                self.objective += -1 * penalty * self.lowVar
                self.upConstraint += self.lowVar
            self += self.upConstraint, "_upper_constraint"
        if sense in [const.LpConstraintEQ, const.LpConstraintGE]:
            # create a constraint the sets the lower bound of target
            self.lowTarget = RHS - lowProportionFreeBound
            self.lowConstraint = LpFractionConstraint(
                self.numerator,
                self.complement,
                const.LpConstraintGE,
                self.lowTarget,
                denominator=self.denominator,
            )
            if penalty is not None:
                self.upVar.upBound = None
                self.objective += penalty * self.upVar
                self.lowConstraint += self.upVar
            self += self.lowConstraint, "_lower_constraint"

    def findLHSValue(self):
        """
        for elastic constraints finds the LHS value of the constraint without
        the free variable and or penalty variable assumes the constant is on the
        rhs
        """
        # uses code from LpFractionConstraint
        if abs(value(self.denominator)) >= const.EPS:
            return value(self.numerator) / value(self.denominator)
        else:
            if abs(value(self.numerator)) <= const.EPS:
                # zero divided by zero will return 1
                return 1.0
            else:
                raise ZeroDivisionError

    def isViolated(self):
        """
        returns true if the penalty variables are non-zero
        """
        if abs(value(self.denominator)) >= const.EPS:
            if self.lowTarget is not None:
                if self.lowTarget > self.findLHSValue():
                    return True
            if self.upTarget is not None:
                if self.findLHSValue() > self.upTarget:
                    return True
        else:
            # if the denominator is zero the constraint is satisfied
            return False


def lpSum(vector):
    """
    Calculate the sum of a list of linear expressions

    :param vector: A list of linear expressions
    """
    return LpAffineExpression().addInPlace(vector)


def lpDot(v1, v2):
    """Calculate the dot product of two lists of linear expressions"""
    if not const.isiterable(v1) and not const.isiterable(v2):
        return v1 * v2
    elif not const.isiterable(v1):
        return lpDot([v1] * len(v2), v2)
    elif not const.isiterable(v2):
        return lpDot(v1, [v2] * len(v1))
    else:
        return lpSum([lpDot(e1, e2) for e1, e2 in zip(v1, v2)])