1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
# PuLP : Python LP Modeler
# Version 2.4
# Copyright (c) 2002-2005, Jean-Sebastien Roy (js@jeannot.org)
# Modifications Copyright (c) 2007- Stuart Anthony Mitchell (s.mitchell@auckland.ac.nz)
# $Id:solvers.py 1791 2008-04-23 22:54:34Z smit023 $
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."""
# Modified by Sam Mathew (@samiit on Github)
# Users would need to install HiGHS on their machine and provide the path to the executable. Please look at this thread: https://github.com/ERGO-Code/HiGHS/issues/527#issuecomment-894852288
# More instructions on: https://www.highs.dev
from .core import LpSolver_CMD, subprocess, PulpSolverError
import os, sys
from .. import constants
import warnings
class HiGHS_CMD(LpSolver_CMD):
"""The HiGHS_CMD solver"""
name = "HiGHS_CMD"
def __init__(
self,
path=None,
keepFiles=False,
mip=True,
msg=True,
options=None,
timeLimit=None,
):
"""
:param bool mip: if False, assume LP even if integer variables
:param bool msg: if False, no log is shown
:param float timeLimit: maximum time for solver (in seconds)
:param list options: list of additional options to pass to solver
:param bool keepFiles: if True, files are saved in the current directory and not deleted after solving
:param str path: path to the solver binary (you can get binaries for your platform from https://github.com/JuliaBinaryWrappers/HiGHS_jll.jl/releases, or else compile from source - https://highs.dev)
"""
LpSolver_CMD.__init__(
self,
mip=mip,
msg=msg,
timeLimit=timeLimit,
options=options,
path=path,
keepFiles=keepFiles,
)
def defaultPath(self):
return self.executableExtension("highs")
def available(self):
"""True if the solver is available"""
return self.executable(self.path)
def actualSolve(self, lp):
"""Solve a well formulated lp problem"""
if not self.executable(self.path):
raise PulpSolverError("PuLP: cannot execute " + self.path)
tmpMps, tmpSol, tmpOptions, tmpLog = self.create_tmp_files(
lp.name, "mps", "sol", "HiGHS", "HiGHS_log"
)
write_lines = [
"solution_file = %s\n" % tmpSol,
"write_solution_to_file = true\n",
]
with open(tmpOptions, "w") as fp:
fp.writelines(write_lines)
if lp.sense == constants.LpMaximize:
# we swap the objectives
# because it does not handle maximization.
warnings.warn(
"HiGHS_CMD does not currently allow maximization, "
"we will minimize the inverse of the objective function."
)
lp += -lp.objective
lp.checkDuplicateVars()
lp.writeMPS(tmpMps) # , mpsSense=constants.LpMinimize)
# just to report duplicated variables:
try:
os.remove(tmpSol)
except:
pass
cmd = self.path
cmd += " %s" % tmpMps
cmd += " --options_file %s" % tmpOptions
if self.timeLimit is not None:
cmd += " --time_limit %s" % self.timeLimit
for option in self.options:
cmd += " " + option
if lp.isMIP():
if not self.mip:
cmd += " --solver simplex"
# warnings.warn("HiGHS_CMD cannot solve the relaxation of a problem")
if self.msg:
pipe = None
else:
pipe = open(os.devnull, "w")
lp_status = None
with subprocess.Popen(
cmd.split(),
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,
) as proc, open(tmpLog, "w") as log_file:
for line in proc.stdout:
if self.msg:
sys.__stdout__.write(line)
log_file.write(line)
# We need to undo the objective swap before finishing
if lp.sense == constants.LpMaximize:
lp += -lp.objective
# The return code for HiGHS on command line follows: 0:program ran successfully, 1: warning, -1: error - https://github.com/ERGO-Code/HiGHS/issues/527#issuecomment-946575028
return_code = proc.wait()
if return_code in [0, 1]:
with open(tmpLog, "r") as log_file:
content = log_file.readlines()
content = [l.strip().split() for l in content]
# LP
model_line = [l for l in content if l[:2] == ["Model", "status"]]
if len(model_line) > 0:
model_status = " ".join(model_line[0][3:]) # Model status: ...
else:
# ILP
model_line = [l for l in content if "Status" in l][0]
model_status = " ".join(model_line[1:])
sol_line = [l for l in content if l[:2] == ["Solution", "status"]]
sol_line = sol_line[0] if len(sol_line) > 0 else ["Not solved"]
sol_status = sol_line[-1]
if model_status.lower() == "optimal": # optimal
status, status_sol = (
constants.LpStatusOptimal,
constants.LpSolutionOptimal,
)
elif sol_status.lower() == "feasible": # feasible
# Following the PuLP convention
status, status_sol = (
constants.LpStatusOptimal,
constants.LpSolutionIntegerFeasible,
)
elif model_status.lower() == "infeasible": # infeasible
status, status_sol = (
constants.LpStatusInfeasible,
constants.LpSolutionNoSolutionFound,
)
elif model_status.lower() == "unbounded": # unbounded
status, status_sol = (
constants.LpStatusUnbounded,
constants.LpSolutionNoSolutionFound,
)
else:
status = constants.LpStatusUndefined
status_sol = constants.LpSolutionNoSolutionFound
raise PulpSolverError("Pulp: Error while executing", self.path)
if status == constants.LpStatusUndefined:
raise PulpSolverError("Pulp: Error while executing", self.path)
if not os.path.exists(tmpSol) or os.stat(tmpSol).st_size == 0:
status_sol = constants.LpSolutionNoSolutionFound
values = None
elif status_sol == constants.LpSolutionNoSolutionFound:
values = None
else:
values = self.readsol(lp.variables(), tmpSol)
self.delete_tmp_files(tmpMps, tmpSol, tmpOptions, tmpLog)
lp.assignStatus(status, status_sol)
if status == constants.LpStatusOptimal:
lp.assignVarsVals(values)
return status
@staticmethod
def readsol(variables, filename):
"""Read a HiGHS solution file"""
with open(filename) as f:
content = f.readlines()
content = [l.strip() for l in content]
values = {}
if not len(content): # if file is empty, update the status_sol
return None
# extract everything between the line Columns and Rows
col_id = [i for i, line in enumerate(content) if "Columns" in line][0]
row_id = [i for i, line in enumerate(content) if "Rows" in line][0]
solution = content[col_id + 1 : row_id]
for line in solution:
var, value = line.split()
values[var] = float(value)
return values
|