1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
|
# PuLP : Python LP Modeler
# Version 1.4.2
# Copyright (c) 2002-2005, Jean-Sebastien Roy (js@jeannot.org)
# Modifications Copyright (c) 2007- Stuart Anthony Mitchell (s.mitchell@auckland.ac.nz)
# $Id:solvers.py 1791 2008-04-23 22:54:34Z smit023 $
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."""
from .core import LpSolver, LpSolver_CMD, subprocess, PulpSolverError
from .. import constants
import warnings
import sys
import re
def _ismip(lp):
"""Check whether lp is a MIP.
From an XPRESS point of view, a problem is also a MIP if it contains
SOS constraints."""
return lp.isMIP() or len(lp.sos1) or len(lp.sos2)
class XPRESS(LpSolver_CMD):
"""The XPRESS LP solver that uses the XPRESS command line tool
in a subprocess"""
name = "XPRESS"
def __init__(
self,
mip=True,
msg=True,
timeLimit=None,
gapRel=None,
options=None,
keepFiles=False,
path=None,
maxSeconds=None,
targetGap=None,
heurFreq=None,
heurStra=None,
coverCuts=None,
preSolve=None,
warmStart=False,
):
"""
Initializes the Xpress solver.
:param bool mip: if False, assume LP even if integer variables
:param bool msg: if False, no log is shown
:param float timeLimit: maximum time for solver (in seconds)
:param float gapRel: relative gap tolerance for the solver to stop (in fraction)
:param maxSeconds: deprecated for timeLimit
:param targetGap: deprecated for gapRel
:param heurFreq: the frequency at which heuristics are used in the tree search
:param heurStra: heuristic strategy
:param coverCuts: the number of rounds of lifted cover inequalities at the top node
:param preSolve: whether presolving should be performed before the main algorithm
:param options: Adding more options, e.g. options = ["NODESELECTION=1", "HEURDEPTH=5"]
More about Xpress options and control parameters please see
https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/HTML/chapter7.html
:param bool warmStart: if True, then use current variable values as start
"""
if maxSeconds:
warnings.warn("Parameter maxSeconds is being depreciated for timeLimit")
if timeLimit is not None:
warnings.warn(
"Parameter timeLimit and maxSeconds passed, using timeLimit"
)
else:
timeLimit = maxSeconds
if targetGap is not None:
warnings.warn("Parameter targetGap is being depreciated for gapRel")
if gapRel is not None:
warnings.warn("Parameter gapRel and epgap passed, using gapRel")
else:
gapRel = targetGap
LpSolver_CMD.__init__(
self,
gapRel=gapRel,
mip=mip,
msg=msg,
timeLimit=timeLimit,
options=options,
path=path,
keepFiles=keepFiles,
heurFreq=heurFreq,
heurStra=heurStra,
coverCuts=coverCuts,
preSolve=preSolve,
warmStart=warmStart,
)
def defaultPath(self):
return self.executableExtension("optimizer")
def available(self):
"""True if the solver is available"""
return self.executable(self.path)
def actualSolve(self, lp):
"""Solve a well formulated lp problem"""
if not self.executable(self.path):
raise PulpSolverError("PuLP: cannot execute " + self.path)
tmpLp, tmpSol, tmpCmd, tmpAttr, tmpStart = self.create_tmp_files(
lp.name, "lp", "prt", "cmd", "attr", "slx"
)
variables = lp.writeLP(tmpLp, writeSOS=1, mip=self.mip)
if self.optionsDict.get("warmStart", False):
start = [(v.name, v.value()) for v in variables if v.value() is not None]
self.writeslxsol(tmpStart, start)
# Explicitly capture some attributes so that we can easily get
# information about the solution.
attrNames = []
if _ismip(lp) and self.mip:
attrNames.extend(["mipobjval", "bestbound", "mipstatus"])
statusmap = {
0: constants.LpStatusUndefined, # XPRS_MIP_NOT_LOADED
1: constants.LpStatusUndefined, # XPRS_MIP_LP_NOT_OPTIMAL
2: constants.LpStatusUndefined, # XPRS_MIP_LP_OPTIMAL
3: constants.LpStatusUndefined, # XPRS_MIP_NO_SOL_FOUND
4: constants.LpStatusUndefined, # XPRS_MIP_SOLUTION
5: constants.LpStatusInfeasible, # XPRS_MIP_INFEAS
6: constants.LpStatusOptimal, # XPRS_MIP_OPTIMAL
7: constants.LpStatusUndefined, # XPRS_MIP_UNBOUNDED
}
statuskey = "mipstatus"
else:
attrNames.extend(["lpobjval", "lpstatus"])
statusmap = {
0: constants.LpStatusNotSolved, # XPRS_LP_UNSTARTED
1: constants.LpStatusOptimal, # XPRS_LP_OPTIMAL
2: constants.LpStatusInfeasible, # XPRS_LP_INFEAS
3: constants.LpStatusUndefined, # XPRS_LP_CUTOFF
4: constants.LpStatusUndefined, # XPRS_LP_UNFINISHED
5: constants.LpStatusUnbounded, # XPRS_LP_UNBOUNDED
6: constants.LpStatusUndefined, # XPRS_LP_CUTOFF_IN_DUAL
7: constants.LpStatusNotSolved, # XPRS_LP_UNSOLVED
8: constants.LpStatusUndefined, # XPRS_LP_NONCONVEX
}
statuskey = "lpstatus"
with open(tmpCmd, "w") as cmd:
if not self.msg:
cmd.write("OUTPUTLOG=0\n")
# The readprob command must be in lower case for correct filename handling
cmd.write("readprob " + self.quote_path(tmpLp) + "\n")
if self.timeLimit is not None:
cmd.write("MAXTIME=%d\n" % self.timeLimit)
targetGap = self.optionsDict.get("gapRel")
if targetGap is not None:
cmd.write("MIPRELSTOP=%f\n" % targetGap)
heurFreq = self.optionsDict.get("heurFreq")
if heurFreq is not None:
cmd.write("HEURFREQ=%d\n" % heurFreq)
heurStra = self.optionsDict.get("heurStra")
if heurStra is not None:
cmd.write("HEURSTRATEGY=%d\n" % heurStra)
coverCuts = self.optionsDict.get("coverCuts")
if coverCuts is not None:
cmd.write("COVERCUTS=%d\n" % coverCuts)
preSolve = self.optionsDict.get("preSolve")
if preSolve is not None:
cmd.write("PRESOLVE=%d\n" % preSolve)
if self.optionsDict.get("warmStart", False):
cmd.write("readslxsol " + self.quote_path(tmpStart) + "\n")
for option in self.options:
cmd.write(option + "\n")
if _ismip(lp) and self.mip:
cmd.write("mipoptimize\n")
else:
cmd.write("lpoptimize\n")
# The writeprtsol command must be in lower case for correct filename handling
cmd.write("writeprtsol " + self.quote_path(tmpSol) + "\n")
cmd.write(
"set fh [open %s w]; list\n" % self.quote_path(tmpAttr)
) # `list` to suppress output
for attr in attrNames:
cmd.write('puts $fh "%s=$%s"\n' % (attr, attr))
cmd.write("close $fh\n")
cmd.write("QUIT\n")
with open(tmpCmd, "r") as cmd:
consume = False
subout = None
suberr = None
if not self.msg:
# Xpress writes a banner before we can disable output. So
# we have to explicitly consume the banner.
if sys.hexversion >= 0x03030000:
subout = subprocess.DEVNULL
suberr = subprocess.DEVNULL
else:
# We could also use open(os.devnull, 'w') but then we
# would be responsible for closing the file.
subout = subprocess.PIPE
suberr = subprocess.STDOUT
consume = True
xpress = subprocess.Popen(
[self.path, lp.name],
shell=True,
stdin=cmd,
stdout=subout,
stderr=suberr,
universal_newlines=True,
)
if consume:
# Special case in which messages are disabled and we have
# to consume any output
for _ in xpress.stdout:
pass
if xpress.wait() != 0:
raise PulpSolverError("PuLP: Error while executing " + self.path)
values, redcost, slacks, duals, attrs = self.readsol(tmpSol, tmpAttr)
self.delete_tmp_files(tmpLp, tmpSol, tmpCmd, tmpAttr)
status = statusmap.get(attrs.get(statuskey, -1), constants.LpStatusUndefined)
lp.assignVarsVals(values)
lp.assignVarsDj(redcost)
lp.assignConsSlack(slacks)
lp.assignConsPi(duals)
lp.assignStatus(status)
return status
@staticmethod
def readsol(filename, attrfile):
"""Read an XPRESS solution file"""
values = {}
redcost = {}
slacks = {}
duals = {}
with open(filename) as f:
for lineno, _line in enumerate(f):
# The first 6 lines are status information
if lineno < 6:
continue
elif lineno == 6:
# Line with status information
_line = _line.split()
rows = int(_line[2])
cols = int(_line[5])
elif lineno < 10:
# Empty line, "Solution Statistics", objective direction
pass
elif lineno == 10:
# Solution status
pass
else:
# There is some more stuff and then follows the "Rows" and
# "Columns" section. That other stuff does not match the
# format of the rows/columns lines, so we can keep the
# parser simple
line = _line.split()
if len(line) > 1:
if line[0] == "C":
# A column
# (C, Number, Name, At, Value, Input Cost, Reduced Cost)
name = line[2]
values[name] = float(line[4])
redcost[name] = float(line[6])
elif len(line[0]) == 1 and line[0] in "LGRE":
# A row
# ([LGRE], Number, Name, At, Value, Slack, Dual, RHS)
name = line[2]
slacks[name] = float(line[5])
duals[name] = float(line[6])
# Read the attributes that we wrote explicitly
attrs = dict()
with open(attrfile) as f:
for line in f:
fields = line.strip().split("=")
if len(fields) == 2 and fields[0].lower() == fields[0]:
value = fields[1].strip()
try:
value = int(fields[1].strip())
except ValueError:
try:
value = float(fields[1].strip())
except ValueError:
pass
attrs[fields[0].strip()] = value
return values, redcost, slacks, duals, attrs
def writeslxsol(self, name, *values):
"""
Write a solution file in SLX format.
The function can write multiple solutions to the same file, each
solution must be passed as a list of (name,value) pairs. Solutions
are written in the order specified and are given names "solutionN"
where N is the index of the solution in the list.
:param string name: file name
:param list values: list of lists of (name,value) pairs
"""
with open(name, "w") as slx:
for i, sol in enumerate(values):
slx.write("NAME solution%d\n" % i)
for name, value in sol:
slx.write(" C %s %.16f\n" % (name, value))
slx.write("ENDATA\n")
@staticmethod
def quote_path(path):
"""
Quotes a path for the Xpress optimizer console, by wrapping it in
double quotes and escaping the following characters, which would
otherwise be interpreted by the Tcl shell: \ $ " [
"""
return '"' + re.sub(r'([\\$"[])', r"\\\1", path) + '"'
XPRESS_CMD = XPRESS
xpress = None
class XPRESS_PY(LpSolver):
"""The XPRESS LP solver that uses XPRESS Python API"""
name = "XPRESS_PY"
def __init__(
self,
mip=True,
msg=True,
timeLimit=None,
gapRel=None,
heurFreq=None,
heurStra=None,
coverCuts=None,
preSolve=None,
warmStart=None,
export=None,
options=None,
):
"""
Initializes the Xpress solver.
:param bool mip: if False, assume LP even if integer variables
:param bool msg: if False, no log is shown
:param float timeLimit: maximum time for solver (in seconds)
:param float gapRel: relative gap tolerance for the solver to stop (in fraction)
:param heurFreq: the frequency at which heuristics are used in the tree search
:param heurStra: heuristic strategy
:param coverCuts: the number of rounds of lifted cover inequalities at the top node
:param preSolve: whether presolving should be performed before the main algorithm
:param bool warmStart: if set then use current variable values as warm start
:param string export: if set then the model will be exported to this file before solving
:param options: Adding more options. This is a list the elements of which
are either (name,value) pairs or strings "name=value".
More about Xpress options and control parameters please see
https://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/HTML/chapter7.html
"""
if timeLimit is not None:
# The Xpress time limit has this interpretation:
# timelimit <0: Stop after -timelimit, no matter what
# timelimit >0: Stop after timelimit only if a feasible solution
# exists. We overwrite this meaning here since it is
# somewhat counterintuitive when compared to other
# solvers. You can always pass a positive timlimit
# via `options` to get that behavior.
timeLimit = -abs(timeLimit)
LpSolver.__init__(
self,
gapRel=gapRel,
mip=mip,
msg=msg,
timeLimit=timeLimit,
options=options,
heurFreq=heurFreq,
heurStra=heurStra,
coverCuts=coverCuts,
preSolve=preSolve,
warmStart=warmStart,
)
self._available = None
self._export = export
def available(self):
"""True if the solver is available"""
if self._available is None:
try:
global xpress
import xpress
# Always disable the global output. We only want output if
# we install callbacks explicitly
xpress.setOutputEnabled(False)
self._available = True
except:
self._available = False
return self._available
def callSolver(self, lp, prepare=None):
"""Perform the actual solve from actualSolve() or actualResolve().
:param prepare: a function that is called with `lp` as argument
and allows final tweaks to `lp.solverModel` before
the low level solve is started.
"""
try:
model = lp.solverModel
# Mark all variables and constraints as unmodified so that
# actualResolve will do the correct thing.
for v in lp.variables():
v.modified = False
for c in lp.constraints.values():
c.modified = False
if self._export is not None:
if self._export.lower().endswith(".lp"):
model.write(self._export, "l")
else:
model.write(self._export)
if prepare is not None:
prepare(lp)
if _ismip(lp) and not self.mip:
# Solve only the LP relaxation
model.lpoptimize()
else:
# In all other cases, solve() does the correct thing
model.solve()
except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err:
raise PulpSolverError(str(err))
def findSolutionValues(self, lp):
try:
model = lp.solverModel
# Collect results
if _ismip(lp) and self.mip:
# Solved as MIP
x, slacks, duals, djs = [], [], None, None
try:
model.getmipsol(x, slacks)
except:
x, slacks = None, None
statusmap = {
0: constants.LpStatusUndefined, # XPRS_MIP_NOT_LOADED
1: constants.LpStatusUndefined, # XPRS_MIP_LP_NOT_OPTIMAL
2: constants.LpStatusUndefined, # XPRS_MIP_LP_OPTIMAL
3: constants.LpStatusUndefined, # XPRS_MIP_NO_SOL_FOUND
4: constants.LpStatusUndefined, # XPRS_MIP_SOLUTION
5: constants.LpStatusInfeasible, # XPRS_MIP_INFEAS
6: constants.LpStatusOptimal, # XPRS_MIP_OPTIMAL
7: constants.LpStatusUndefined, # XPRS_MIP_UNBOUNDED
}
statuskey = "mipstatus"
else:
# Solved as continuous
x, slacks, duals, djs = [], [], [], []
try:
model.getlpsol(x, slacks, duals, djs)
except:
# No solution available
x, slacks, duals, djs = None, None, None, None
statusmap = {
0: constants.LpStatusNotSolved, # XPRS_LP_UNSTARTED
1: constants.LpStatusOptimal, # XPRS_LP_OPTIMAL
2: constants.LpStatusInfeasible, # XPRS_LP_INFEAS
3: constants.LpStatusUndefined, # XPRS_LP_CUTOFF
4: constants.LpStatusUndefined, # XPRS_LP_UNFINISHED
5: constants.LpStatusUnbounded, # XPRS_LP_UNBOUNDED
6: constants.LpStatusUndefined, # XPRS_LP_CUTOFF_IN_DUAL
7: constants.LpStatusNotSolved, # XPRS_LP_UNSOLVED
8: constants.LpStatusUndefined, # XPRS_LP_NONCONVEX
}
statuskey = "lpstatus"
if x is not None:
lp.assignVarsVals({v.name: x[v._xprs[0]] for v in lp.variables()})
if djs is not None:
lp.assignVarsDj({v.name: djs[v._xprs[0]] for v in lp.variables()})
if duals is not None:
lp.assignConsPi(
{c.name: duals[c._xprs[0]] for c in lp.constraints.values()}
)
if slacks is not None:
lp.assignConsSlack(
{c.name: slacks[c._xprs[0]] for c in lp.constraints.values()}
)
status = statusmap.get(
model.getAttrib(statuskey), constants.LpStatusUndefined
)
lp.assignStatus(status)
return status
except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err:
raise PulpSolverError(str(err))
def actualSolve(self, lp, prepare=None):
"""Solve a well formulated lp problem"""
if not self.available():
# Import again to get a more verbose error message
message = "XPRESS Python API not available"
try:
import xpress
except ImportError as err:
message = str(err)
raise PulpSolverError(message)
self.buildSolverModel(lp)
self.callSolver(lp, prepare)
return self.findSolutionValues(lp)
def buildSolverModel(self, lp):
"""
Takes the pulp lp model and translates it into an xpress model
"""
self._extract(lp)
try:
# Apply controls, warmstart etc. We do this here rather than in
# callSolver() so that the caller has a chance to overwrite things
# either using the `prepare` argument to callSolver() or by
# explicitly calling
# self.buildSolverModel()
# self.callSolver()
# self.findSolutionValues()
# This also avoids setting warmstart information passed to the
# constructor from actualResolve(), which would almost certainly
# be unintended.
model = lp.solverModel
# Apply controls that were passed to the constructor
for key, name in [
("gapRel", "MIPRELSTOP"),
("timeLimit", "MAXTIME"),
("heurFreq", "HEURFREQ"),
("heurStra", "HEURSTRATEGY"),
("coverCuts", "COVERCUTS"),
("preSolve", "PRESOLVE"),
]:
value = self.optionsDict.get(key, None)
if value is not None:
model.setControl(name, value)
# Apply any other controls. These overwrite controls that were
# passed explicitly into the constructor.
for option in self.options:
if isinstance(option, tuple):
name = optione[0]
value = option[1]
else:
fields = option.split("=", 1)
if len(fields) != 2:
raise PulpSolverError("Invalid option " + str(option))
name = fields[0].strip()
value = fields[1].strip()
try:
model.setControl(name, int(value))
continue
except ValueError:
pass
try:
model.setControl(name, float(value))
continue
except ValueError:
pass
model.setControl(name, value)
# Setup warmstart information
if self.optionsDict.get("warmStart", False):
solval = list()
colind = list()
for v in sorted(lp.variables(), key=lambda x: x._xprs[0]):
if v.value() is not None:
solval.append(v.value())
colind.append(v._xprs[0])
if _ismip(lp) and self.mip:
# If we have a value for every variable then use
# loadmipsol(), which requires a dense solution. Otherwise
# use addmipsol() which allows sparse vectors.
if len(solval) == model.attributes.cols:
model.loadmipsol(solval)
else:
model.addmipsol(solval, colind, "warmstart")
else:
model.loadlpsol(solval, None, None, None)
# Setup message callback if output is requested
if self.msg:
def message(prob, data, msg, msgtype):
if msgtype > 0:
print(msg)
model.addcbmessage(message)
except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err:
raise PulpSolverError(str(err))
def actualResolve(self, lp, prepare=None):
"""Resolve a problem that was previously solved by actualSolve()."""
try:
rhsind = list()
rhsval = list()
for name in sorted(lp.constraints):
con = lp.constraints[name]
if not con.modified:
continue
if not hasattr(con, "_xprs"):
# Adding constraints is not implemented at the moment
raise PulpSolverError("Cannot add new constraints")
# At the moment only RHS can change in pulp.py
rhsind.append(con._xprs[0])
rhsval.append(-con.constant)
if len(rhsind) > 0:
lp.solverModel.chgrhs(rhsind, rhsval)
bndind = list()
bndtype = list()
bndval = list()
for v in lp.variables():
if not v.modified:
continue
if not hasattr(v, "_xprs"):
# Adding variables is not implemented at the moment
raise PulpSolverError("Cannot add new variables")
# At the moment only bounds can change in pulp.py
bndind.append(v._xprs[0])
bndtype.append("L")
bndval.append(-xpress.infinity if v.lowBound is None else v.lowBound)
bndind.append(v._xprs[0])
bndtype.append("G")
bndval.append(xpress.infinity if v.upBound is None else v.upBound)
if len(bndtype) > 0:
lp.solverModel.chgbounds(bndind, bndtype, bndval)
self.callSolver(lp, prepare)
return self.findSolutionValues(lp)
except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err:
raise PulpSolverError(str(err))
@staticmethod
def _reset(lp):
"""Reset any XPRESS specific information in lp."""
if hasattr(lp, "solverModel"):
delattr(lp, "solverModel")
for v in lp.variables():
if hasattr(v, "_xprs"):
delattr(v, "_xprs")
for c in lp.constraints.values():
if hasattr(c, "_xprs"):
delattr(c, "_xprs")
def _extract(self, lp):
"""Extract a given model to an XPRESS Python API instance.
The function stores XPRESS specific information in the `solverModel` property
of `lp` and each variable and constraint. These information can be
removed by calling `_reset`.
"""
self._reset(lp)
try:
model = xpress.problem()
if lp.sense == constants.LpMaximize:
model.chgobjsense(xpress.maximize)
# Create variables. We first collect the info for all variables
# and then create all of them in one shot. This is supposed to
# be faster in case we have to create a lot of variables.
obj = list()
lb = list()
ub = list()
ctype = list()
names = list()
for v in lp.variables():
lb.append(-xpress.infinity if v.lowBound is None else v.lowBound)
ub.append(xpress.infinity if v.upBound is None else v.upBound)
obj.append(lp.objective.get(v, 0.0))
if v.cat == constants.LpInteger:
ctype.append("I")
elif v.cat == constants.LpBinary:
ctype.append("B")
else:
ctype.append("C")
names.append(v.name)
model.addcols(obj, [0] * (len(obj) + 1), [], [], lb, ub, names, ctype)
for j, (v, x) in enumerate(zip(lp.variables(), model.getVariable())):
v._xprs = (j, x)
# Generate constraints. Sort by name to get deterministic
# ordering of constraints.
# Constraints are generated in blocks of 100 constraints to speed
# up things a bit but still keep memory usage small.
cons = list()
for i, name in enumerate(sorted(lp.constraints)):
con = lp.constraints[name]
# Sort the variables by index to get deterministic
# ordering of variables in the row.
lhs = xpress.Sum(
a * x._xprs[1]
for x, a in sorted(con.items(), key=lambda x: x[0]._xprs[0])
)
rhs = -con.constant
if con.sense == constants.LpConstraintLE:
c = xpress.constraint(body=lhs, sense=xpress.leq, rhs=rhs)
elif con.sense == constants.LpConstraintGE:
c = xpress.constraint(body=lhs, sense=xpress.geq, rhs=rhs)
elif con.sense == constants.LpConstraintEQ:
c = xpress.constraint(body=lhs, sense=xpress.eq, rhs=rhs)
else:
raise PulpSolverError(
"Unsupprted constraint type " + str(con.sense)
)
cons.append((i, c, con))
if len(cons) > 100:
model.addConstraint([c for _, c, _ in cons])
for i, c, con in cons:
con._xprs = (i, c)
cons = list()
if len(cons) > 0:
model.addConstraint([c for _, c, _ in cons])
for i, c, con in cons:
con._xprs = (i, c)
# SOS constraints
def addsos(m, sosdict, sostype):
"""Extract sos constraints from PuLP."""
soslist = []
# Sort by name to get deterministic ordering. Note that
# names may be plain integers, that is why we use str(name)
# to pass them to the SOS constructor.
for name in sorted(sosdict):
indices = []
weights = []
for v, val in sosdict[name].items():
indices.append(v._xprs[0])
weights.append(val)
soslist.append(xpress.sos(indices, weights, sostype, str(name)))
if len(soslist):
m.addSOS(soslist)
addsos(model, lp.sos1, 1)
addsos(model, lp.sos2, 2)
lp.solverModel = model
except (xpress.ModelError, xpress.InterfaceError, xpress.SolverError) as err:
# Undo everything
self._reset(lp)
raise PulpSolverError(str(err))
def getAttribute(self, lp, which):
"""Get an arbitrary attribute for the model that was previously
solved using actualSolve()."""
return lp.solverModel.getAttrib(which)
|