1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
|
"""
Tests for pulp
"""
import os
import tempfile
import platform
from pulp.constants import PulpError
from pulp.apis import *
from pulp import LpVariable, LpProblem, lpSum, LpConstraintVar, LpFractionConstraint
from pulp import constants as const
from pulp.tests.bin_packing_problem import create_bin_packing_problem
from pulp.utilities import makeDict
import unittest
# from: http://lpsolve.sourceforge.net/5.5/mps-format.htm
EXAMPLE_MPS_RHS56 = """NAME TESTPROB
ROWS
N COST
L LIM1
G LIM2
E MYEQN
COLUMNS
XONE COST 1 LIM1 1
XONE LIM2 1
YTWO COST 4 LIM1 1
YTWO MYEQN -1
ZTHREE COST 9 LIM2 1
ZTHREE MYEQN 1
RHS
RHS1 LIM1 5 LIM2 10
RHS1 MYEQN 7
BOUNDS
UP BND1 XONE 4
LO BND1 YTWO -1
UP BND1 YTWO 1
ENDATA
"""
def dumpTestProblem(prob):
try:
prob.writeLP("debug.lp")
prob.writeMPS("debug.mps")
except:
print("(Failed to write the test problem.)")
class BaseSolverTest:
class PuLPTest(unittest.TestCase):
solveInst = None
def setUp(self):
self.solver = self.solveInst(msg=False)
if not self.solver.available():
self.skipTest("solver {} not available".format(self.solveInst))
def tearDown(self):
for ext in ["mst", "log", "lp", "mps", "sol"]:
filename = "{}.{}".format(self._testMethodName, ext)
try:
os.remove(filename)
except:
pass
pass
def test_pulp_001(self):
"""
Test that a variable is deleted when it is suptracted to 0
"""
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
c1 = x + y <= 5
c2 = c1 + z - z
print("\t Testing zero subtraction")
assert str(c2) # will raise an exception
def test_pulp_009(self):
# infeasible
prob = LpProblem("test09", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += (
lpSum([v for v in [x] if False]) >= 5,
"c1",
) # this is a 0 >=5 constraint
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
print("\t Testing inconsistent lp solution")
# this was a problem with use_mps=false
if self.solver.__class__ in [PULP_CBC_CMD, COIN_CMD]:
pulpTestCheck(
prob,
self.solver,
[const.LpStatusInfeasible],
{x: 4, y: -1, z: 6, w: 0},
use_mps=False,
)
elif self.solver.__class__ in [CHOCO_CMD, MIPCL_CMD]:
# this error is not detected with mps and choco, MIPCL_CMD can only use mps files
pass
else:
pulpTestCheck(
prob,
self.solver,
[
const.LpStatusInfeasible,
const.LpStatusNotSolved,
const.LpStatusUndefined,
],
)
def test_pulp_010(self):
# Continuous
prob = LpProblem("test010", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
print("\t Testing continuous LP solution")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 4, y: -1, z: 6, w: 0}
)
def test_pulp_011(self):
# Continuous Maximisation
prob = LpProblem("test011", const.LpMaximize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
print("\t Testing maximize continuous LP solution")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 4, y: 1, z: 8, w: 0}
)
def test_pulp_012(self):
# Unbounded
prob = LpProblem("test012", const.LpMaximize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z + w, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
print("\t Testing unbounded continuous LP solution")
if self.solver.__class__ in [GUROBI, CPLEX_CMD, YAPOSIB, MOSEK]:
# These solvers report infeasible or unbounded
pulpTestCheck(
prob,
self.solver,
[const.LpStatusInfeasible, const.LpStatusUnbounded],
)
elif self.solver.__class__ in [COINMP_DLL, MIPCL_CMD]:
# COINMP_DLL is just plain wrong
# also MIPCL_CMD
print("\t\t Error in CoinMP and MIPCL_CMD: reports Optimal")
pulpTestCheck(prob, self.solver, [const.LpStatusOptimal])
elif self.solver.__class__ is GLPK_CMD:
# GLPK_CMD Does not report unbounded problems, correctly
pulpTestCheck(prob, self.solver, [const.LpStatusUndefined])
elif self.solver.__class__ in [GUROBI_CMD, SCIP_CMD]:
# GUROBI_CMD has a very simple interface
pulpTestCheck(prob, self.solver, [const.LpStatusNotSolved])
elif self.solver.__class__ in [CHOCO_CMD]:
# choco bounds all variables. Would not return unbounded status
pass
else:
pulpTestCheck(prob, self.solver, [const.LpStatusUnbounded])
def test_pulp_013(self):
# Long name
prob = LpProblem("test013", const.LpMinimize)
x = LpVariable("x" * 120, 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
print("\t Testing Long Names")
if self.solver.__class__ in [
CPLEX_CMD,
GLPK_CMD,
GUROBI_CMD,
MIPCL_CMD,
SCIP_CMD,
HiGHS_CMD,
XPRESS,
XPRESS_CMD,
]:
try:
pulpTestCheck(
prob,
self.solver,
[const.LpStatusOptimal],
{x: 4, y: -1, z: 6, w: 0},
)
except PulpError:
# these solvers should raise an error'
pass
else:
pulpTestCheck(
prob,
self.solver,
[const.LpStatusOptimal],
{x: 4, y: -1, z: 6, w: 0},
)
def test_pulp_014(self):
# repeated name
prob = LpProblem("test014", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("x", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
print("\t Testing repeated Names")
if self.solver.__class__ in [
COIN_CMD,
COINMP_DLL,
PULP_CBC_CMD,
CPLEX_CMD,
CPLEX_PY,
GLPK_CMD,
GUROBI_CMD,
CHOCO_CMD,
MIPCL_CMD,
MOSEK,
SCIP_CMD,
HiGHS_CMD,
XPRESS,
XPRESS_CMD,
XPRESS_PY,
]:
try:
pulpTestCheck(
prob,
self.solver,
[const.LpStatusOptimal],
{x: 4, y: -1, z: 6, w: 0},
)
except PulpError:
# these solvers should raise an error
pass
else:
pulpTestCheck(
prob,
self.solver,
[const.LpStatusOptimal],
{x: 4, y: -1, z: 6, w: 0},
)
def test_pulp_015(self):
# zero constraint
prob = LpProblem("test015", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
prob += lpSum([0, 0]) <= 0, "c5"
print("\t Testing zero constraint")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 4, y: -1, z: 6, w: 0}
)
def test_pulp_016(self):
# zero objective
prob = LpProblem("test016", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
prob += lpSum([0, 0]) <= 0, "c5"
print("\t Testing zero objective")
pulpTestCheck(prob, self.solver, [const.LpStatusOptimal])
def test_pulp_017(self):
# variable as objective
prob = LpProblem("test017", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob.setObjective(x)
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
prob += lpSum([0, 0]) <= 0, "c5"
print("\t Testing LpVariable (not LpAffineExpression) objective")
pulpTestCheck(prob, self.solver, [const.LpStatusOptimal])
def test_pulp_018(self):
# Long name in lp
prob = LpProblem("test018", const.LpMinimize)
x = LpVariable("x" * 90, 0, 4)
y = LpVariable("y" * 90, -1, 1)
z = LpVariable("z" * 90, 0)
w = LpVariable("w" * 90, 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
if self.solver.__class__ in [PULP_CBC_CMD, COIN_CMD]:
print("\t Testing Long lines in LP")
pulpTestCheck(
prob,
self.solver,
[const.LpStatusOptimal],
{x: 4, y: -1, z: 6, w: 0},
use_mps=False,
)
def test_pulp_019(self):
# divide
prob = LpProblem("test019", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += (2 * x + 2 * y).__div__(2.0) <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
print("\t Testing LpAffineExpression divide")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 4, y: -1, z: 6, w: 0}
)
def test_pulp_020(self):
# MIP
prob = LpProblem("test020", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0, None, const.LpInteger)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7.5, "c3"
print("\t Testing MIP solution")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 3, y: -0.5, z: 7}
)
def test_pulp_021(self):
# MIP with floats in objective
prob = LpProblem("test021", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0, None, const.LpInteger)
prob += 1.1 * x + 4.1 * y + 9.1 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7.5, "c3"
print("\t Testing MIP solution with floats in objective")
pulpTestCheck(
prob,
self.solver,
[const.LpStatusOptimal],
{x: 3, y: -0.5, z: 7},
objective=64.95,
)
def test_pulp_022(self):
# Initial value
prob = LpProblem("test022", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0, None, const.LpInteger)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7.5, "c3"
x.setInitialValue(3)
y.setInitialValue(-0.5)
z.setInitialValue(7)
if self.solver.name in ["GUROBI", "GUROBI_CMD", "CPLEX_CMD", "CPLEX_PY"]:
self.solver.optionsDict["warmStart"] = True
print("\t Testing Initial value in MIP solution")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 3, y: -0.5, z: 7}
)
def test_pulp_023(self):
# Initial value (fixed)
prob = LpProblem("test023", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0, None, const.LpInteger)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7.5, "c3"
solution = {x: 4, y: -0.5, z: 7}
for v in [x, y, z]:
v.setInitialValue(solution[v])
v.fixValue()
self.solver.optionsDict["warmStart"] = True
print("\t Testing fixing value in MIP solution")
pulpTestCheck(prob, self.solver, [const.LpStatusOptimal], solution)
def test_pulp_030(self):
# relaxed MIP
prob = LpProblem("test030", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0, None, const.LpInteger)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7.5, "c3"
self.solver.mip = 0
print("\t Testing MIP relaxation")
if self.solver.__class__ in [
GUROBI_CMD,
CHOCO_CMD,
MIPCL_CMD,
SCIP_CMD,
]:
# gurobi command, choco and mipcl do not let the problem be relaxed
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 3.0, y: -0.5, z: 7}
)
else:
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 3.5, y: -1, z: 6.5}
)
def test_pulp_040(self):
# Feasibility only
prob = LpProblem("test040", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0, None, const.LpInteger)
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7.5, "c3"
print("\t Testing feasibility problem (no objective)")
pulpTestCheck(prob, self.solver, [const.LpStatusOptimal])
def test_pulp_050(self):
# Infeasible
prob = LpProblem("test050", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0, 10)
prob += x + y <= 5.2, "c1"
prob += x + z >= 10.3, "c2"
prob += -y + z == 17.5, "c3"
print("\t Testing an infeasible problem")
if self.solver.__class__ is GLPK_CMD:
# GLPK_CMD return codes are not informative enough
pulpTestCheck(prob, self.solver, [const.LpStatusUndefined])
elif self.solver.__class__ in [GUROBI_CMD]:
# GUROBI_CMD Does not solve the problem
pulpTestCheck(prob, self.solver, [const.LpStatusNotSolved])
else:
pulpTestCheck(prob, self.solver, [const.LpStatusInfeasible])
def test_pulp_060(self):
# Integer Infeasible
prob = LpProblem("test060", const.LpMinimize)
x = LpVariable("x", 0, 4, const.LpInteger)
y = LpVariable("y", -1, 1, const.LpInteger)
z = LpVariable("z", 0, 10, const.LpInteger)
prob += x + y <= 5.2, "c1"
prob += x + z >= 10.3, "c2"
prob += -y + z == 7.4, "c3"
print("\t Testing an integer infeasible problem")
if self.solver.__class__ in [GLPK_CMD, COIN_CMD, PULP_CBC_CMD, MOSEK]:
# GLPK_CMD returns InfeasibleOrUnbounded
pulpTestCheck(
prob,
self.solver,
[const.LpStatusInfeasible, const.LpStatusUndefined],
)
elif self.solver.__class__ in [COINMP_DLL]:
# Currently there is an error in COINMP for problems where
# presolve eliminates too many variables
print("\t\t Error in CoinMP to be fixed, reports Optimal")
pulpTestCheck(prob, self.solver, [const.LpStatusOptimal])
elif self.solver.__class__ in [GUROBI_CMD]:
pulpTestCheck(prob, self.solver, [const.LpStatusNotSolved])
else:
pulpTestCheck(prob, self.solver, [const.LpStatusInfeasible])
def test_pulp_061(self):
# Integer Infeasible
prob = LpProblem("sample", const.LpMaximize)
dummy = LpVariable("dummy")
c1 = LpVariable("c1", 0, 1, const.LpBinary)
c2 = LpVariable("c2", 0, 1, const.LpBinary)
prob += dummy
prob += c1 + c2 == 2
prob += c1 <= 0
print("\t Testing another integer infeasible problem")
if self.solver.__class__ in [GUROBI_CMD, SCIP_CMD]:
pulpTestCheck(prob, self.solver, [const.LpStatusNotSolved])
elif self.solver.__class__ in [GLPK_CMD]:
# GLPK_CMD returns InfeasibleOrUnbounded
pulpTestCheck(
prob,
self.solver,
[const.LpStatusInfeasible, const.LpStatusUndefined],
)
else:
pulpTestCheck(prob, self.solver, [const.LpStatusInfeasible])
def test_pulp_070(self):
# Column Based modelling of test_pulp_1
prob = LpProblem("test070", const.LpMinimize)
obj = LpConstraintVar("obj")
# constraints
a = LpConstraintVar("C1", const.LpConstraintLE, 5)
b = LpConstraintVar("C2", const.LpConstraintGE, 10)
c = LpConstraintVar("C3", const.LpConstraintEQ, 7)
prob.setObjective(obj)
prob += a
prob += b
prob += c
# Variables
x = LpVariable("x", 0, 4, const.LpContinuous, obj + a + b)
y = LpVariable("y", -1, 1, const.LpContinuous, 4 * obj + a - c)
z = LpVariable("z", 0, None, const.LpContinuous, 9 * obj + b + c)
print("\t Testing column based modelling")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 4, y: -1, z: 6}
)
def test_pulp_075(self):
# Column Based modelling of test_pulp_1 with empty constraints
prob = LpProblem("test075", const.LpMinimize)
obj = LpConstraintVar("obj")
# constraints
a = LpConstraintVar("C1", const.LpConstraintLE, 5)
b = LpConstraintVar("C2", const.LpConstraintGE, 10)
c = LpConstraintVar("C3", const.LpConstraintEQ, 7)
prob.setObjective(obj)
prob += a
prob += b
prob += c
# Variables
x = LpVariable("x", 0, 4, const.LpContinuous, obj + b)
y = LpVariable("y", -1, 1, const.LpContinuous, 4 * obj - c)
z = LpVariable("z", 0, None, const.LpContinuous, 9 * obj + b + c)
if self.solver.__class__ in [
CPLEX_CMD,
COINMP_DLL,
YAPOSIB,
PYGLPK,
]:
print("\t Testing column based modelling with empty constraints")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 4, y: -1, z: 6}
)
def test_pulp_080(self):
"""
Test the reporting of dual variables slacks and reduced costs
"""
prob = LpProblem("test080", const.LpMinimize)
x = LpVariable("x", 0, 5)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
c1 = x + y <= 5
c2 = x + z >= 10
c3 = -y + z == 7
prob += x + 4 * y + 9 * z, "obj"
prob += c1, "c1"
prob += c2, "c2"
prob += c3, "c3"
if self.solver.__class__ in [
CPLEX_CMD,
COINMP_DLL,
PULP_CBC_CMD,
YAPOSIB,
PYGLPK,
]:
print("\t Testing dual variables and slacks reporting")
pulpTestCheck(
prob,
self.solver,
[const.LpStatusOptimal],
sol={x: 4, y: -1, z: 6},
reducedcosts={x: 0, y: 12, z: 0},
duals={"c1": 0, "c2": 1, "c3": 8},
slacks={"c1": 2, "c2": 0, "c3": 0},
)
def test_pulp_090(self):
# Column Based modelling of test_pulp_1 with a resolve
prob = LpProblem("test090", const.LpMinimize)
obj = LpConstraintVar("obj")
# constraints
a = LpConstraintVar("C1", const.LpConstraintLE, 5)
b = LpConstraintVar("C2", const.LpConstraintGE, 10)
c = LpConstraintVar("C3", const.LpConstraintEQ, 7)
prob.setObjective(obj)
prob += a
prob += b
prob += c
prob.setSolver(self.solver) # Variables
x = LpVariable("x", 0, 4, const.LpContinuous, obj + a + b)
y = LpVariable("y", -1, 1, const.LpContinuous, 4 * obj + a - c)
prob.resolve()
z = LpVariable("z", 0, None, const.LpContinuous, 9 * obj + b + c)
if self.solver.__class__ in [COINMP_DLL]:
print("\t Testing resolve of problem")
prob.resolve()
# difficult to check this is doing what we want as the resolve is
# over ridden if it is not implemented
# test_pulp_Check(prob, self.solver, [const.LpStatusOptimal], {x:4, y:-1, z:6})
def test_pulp_100(self):
"""
Test the ability to sequentially solve a problem
"""
# set up a cubic feasible region
prob = LpProblem("test100", const.LpMinimize)
x = LpVariable("x", 0, 1)
y = LpVariable("y", 0, 1)
z = LpVariable("z", 0, 1)
obj1 = x + 0 * y + 0 * z
obj2 = 0 * x - 1 * y + 0 * z
prob += x <= 1, "c1"
if self.solver.__class__ in [COINMP_DLL, GUROBI]:
print("\t Testing Sequential Solves")
status = prob.sequentialSolve([obj1, obj2], solver=self.solver)
pulpTestCheck(
prob,
self.solver,
[[const.LpStatusOptimal, const.LpStatusOptimal]],
sol={x: 0, y: 1},
status=status,
)
def test_pulp_110(self):
"""
Test the ability to use fractional constraints
"""
prob = LpProblem("test110", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
prob += LpFractionConstraint(x, z, const.LpConstraintEQ, 0.5, name="c5")
print("\t Testing fractional constraints")
pulpTestCheck(
prob,
self.solver,
[const.LpStatusOptimal],
{x: 10 / 3.0, y: -1 / 3.0, z: 20 / 3.0, w: 0},
)
def test_pulp_120(self):
"""
Test the ability to use Elastic constraints
"""
prob = LpProblem("test120", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w")
prob += x + 4 * y + 9 * z + w, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob.extend((w >= -1).makeElasticSubProblem())
print("\t Testing elastic constraints (no change)")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 4, y: -1, z: 6, w: -1}
)
def test_pulp_121(self):
"""
Test the ability to use Elastic constraints
"""
prob = LpProblem("test121", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w")
prob += x + 4 * y + 9 * z + w, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob.extend((w >= -1).makeElasticSubProblem(proportionFreeBound=0.1))
print("\t Testing elastic constraints (freebound)")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 4, y: -1, z: 6, w: -1.1}
)
def test_pulp_122(self):
"""
Test the ability to use Elastic constraints (penalty unchanged)
"""
prob = LpProblem("test122", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w")
prob += x + 4 * y + 9 * z + w, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob.extend((w >= -1).makeElasticSubProblem(penalty=1.1))
print("\t Testing elastic constraints (penalty unchanged)")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 4, y: -1, z: 6, w: -1.0}
)
def test_pulp_123(self):
"""
Test the ability to use Elastic constraints (penalty unbounded)
"""
prob = LpProblem("test123", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w")
prob += x + 4 * y + 9 * z + w, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob.extend((w >= -1).makeElasticSubProblem(penalty=0.9))
print("\t Testing elastic constraints (penalty unbounded)")
if self.solver.__class__ in [COINMP_DLL, GUROBI, CPLEX_CMD, YAPOSIB, MOSEK]:
# COINMP_DLL Does not report unbounded problems, correctly
pulpTestCheck(
prob,
self.solver,
[const.LpStatusInfeasible, const.LpStatusUnbounded],
)
elif self.solver.__class__ is GLPK_CMD:
# GLPK_CMD Does not report unbounded problems, correctly
pulpTestCheck(prob, self.solver, [const.LpStatusUndefined])
elif self.solver.__class__ in [GUROBI_CMD, SCIP_CMD]:
# GLPK_CMD Does not report unbounded problems, correctly
pulpTestCheck(prob, self.solver, [const.LpStatusNotSolved])
elif self.solver.__class__ in [CHOCO_CMD]:
# choco bounds all variables. Would not return unbounded status
pass
else:
pulpTestCheck(prob, self.solver, [const.LpStatusUnbounded])
def test_pulpTestAll(self):
"""
Test the availability of the function pulpTestAll
"""
print("\t Testing the availability of the function pulpTestAll")
from pulp import pulpTestAll
def test_export_dict_LP(self):
prob = LpProblem("test_export_dict_LP", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
data = prob.toDict()
var1, prob1 = LpProblem.fromDict(data)
x, y, z, w = [var1[name] for name in ["x", "y", "z", "w"]]
print("\t Testing continuous LP solution - export dict")
pulpTestCheck(
prob1, self.solver, [const.LpStatusOptimal], {x: 4, y: -1, z: 6, w: 0}
)
def test_export_dict_LP_no_obj(self):
prob = LpProblem("test_export_dict_LP_no_obj", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0, 0)
prob += x + y >= 5, "c1"
prob += x + z == 10, "c2"
prob += -y + z <= 7, "c3"
prob += w >= 0, "c4"
data = prob.toDict()
var1, prob1 = LpProblem.fromDict(data)
x, y, z, w = [var1[name] for name in ["x", "y", "z", "w"]]
print("\t Testing export dict for LP")
pulpTestCheck(
prob1, self.solver, [const.LpStatusOptimal], {x: 4, y: 1, z: 6, w: 0}
)
def test_export_json_LP(self):
name = self._testMethodName
prob = LpProblem(name, const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
filename = name + ".json"
prob.toJson(filename, indent=4)
var1, prob1 = LpProblem.fromJson(filename)
try:
os.remove(filename)
except:
pass
x, y, z, w = [var1[name] for name in ["x", "y", "z", "w"]]
print("\t Testing continuous LP solution - export JSON")
pulpTestCheck(
prob1, self.solver, [const.LpStatusOptimal], {x: 4, y: -1, z: 6, w: 0}
)
def test_export_dict_MIP(self):
import copy
prob = LpProblem("test_export_dict_MIP", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0, None, const.LpInteger)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7.5, "c3"
data = prob.toDict()
data_backup = copy.deepcopy(data)
var1, prob1 = LpProblem.fromDict(data)
x, y, z = [var1[name] for name in ["x", "y", "z"]]
print("\t Testing export dict MIP")
pulpTestCheck(
prob1, self.solver, [const.LpStatusOptimal], {x: 3, y: -0.5, z: 7}
)
# we also test that we have not modified the dictionary when importing it
self.assertDictEqual(data, data_backup)
def test_export_dict_max(self):
prob = LpProblem("test_export_dict_max", const.LpMaximize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
data = prob.toDict()
var1, prob1 = LpProblem.fromDict(data)
x, y, z, w = [var1[name] for name in ["x", "y", "z", "w"]]
print("\t Testing maximize continuous LP solution")
pulpTestCheck(
prob1, self.solver, [const.LpStatusOptimal], {x: 4, y: 1, z: 8, w: 0}
)
def test_export_solver_dict_LP(self):
prob = LpProblem("test_export_dict_LP", const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
data = self.solver.toDict()
solver1 = getSolverFromDict(data)
print("\t Testing continuous LP solution - export solver dict")
pulpTestCheck(
prob, solver1, [const.LpStatusOptimal], {x: 4, y: -1, z: 6, w: 0}
)
def test_export_solver_json(self):
name = self._testMethodName
prob = LpProblem(name, const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
self.solver.mip = True
logFilename = name + ".log"
if self.solver.name == "CPLEX_CMD":
self.solver.optionsDict = dict(
gapRel=0.1,
gapAbs=1,
maxMemory=1000,
maxNodes=1,
threads=1,
logPath=logFilename,
warmStart=True,
)
elif self.solver.name in ["GUROBI_CMD", "COIN_CMD", "PULP_CBC_CMD"]:
self.solver.optionsDict = dict(
gapRel=0.1, gapAbs=1, threads=1, logPath=logFilename, warmStart=True
)
filename = name + ".json"
self.solver.toJson(filename, indent=4)
solver1 = getSolverFromJson(filename)
try:
os.remove(filename)
except:
pass
print("\t Testing continuous LP solution - export solver JSON")
pulpTestCheck(
prob, solver1, [const.LpStatusOptimal], {x: 4, y: -1, z: 6, w: 0}
)
def test_timeLimit(self):
name = self._testMethodName
prob = LpProblem(name, const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
self.solver.timeLimit = 20
# CHOCO has issues when given a time limit
print("\t Testing timeLimit argument")
if self.solver.name != "CHOCO_CMD":
pulpTestCheck(
prob,
self.solver,
[const.LpStatusOptimal],
{x: 4, y: -1, z: 6, w: 0},
)
def test_assignInvalidStatus(self):
print("\t Testing invalid status")
t = LpProblem("test")
Invalid = -100
self.assertRaises(const.PulpError, lambda: t.assignStatus(Invalid))
self.assertRaises(const.PulpError, lambda: t.assignStatus(0, Invalid))
def test_logPath(self):
name = self._testMethodName
prob = LpProblem(name, const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
logFilename = name + ".log"
self.solver.optionsDict["logPath"] = logFilename
if self.solver.name in [
"CPLEX_PY",
"CPLEX_CMD",
"GUROBI",
"GUROBI_CMD",
"PULP_CBC_CMD",
"COIN_CMD",
]:
print("\t Testing logPath argument")
pulpTestCheck(
prob,
self.solver,
[const.LpStatusOptimal],
{x: 4, y: -1, z: 6, w: 0},
)
if not os.path.exists(logFilename):
raise PulpError("Test failed for solver: {}".format(self.solver))
if not os.path.getsize(logFilename):
raise PulpError("Test failed for solver: {}".format(self.solver))
def test_makeDict_behavior(self):
"""
Test if makeDict is returning the expected value.
"""
headers = [["A", "B"], ["C", "D"]]
values = [[1, 2], [3, 4]]
target = {"A": {"C": 1, "D": 2}, "B": {"C": 3, "D": 4}}
dict_with_default = makeDict(headers, values, default=0)
dict_without_default = makeDict(headers, values)
print("\t Testing makeDict general behavior")
self.assertEqual(dict_with_default, target)
self.assertEqual(dict_without_default, target)
def test_makeDict_default_value(self):
"""
Test if makeDict is returning a default value when specified.
"""
headers = [["A", "B"], ["C", "D"]]
values = [[1, 2], [3, 4]]
dict_with_default = makeDict(headers, values, default=0)
dict_without_default = makeDict(headers, values)
print("\t Testing makeDict default value behavior")
# Check if a default value is passed
self.assertEqual(dict_with_default["X"]["Y"], 0)
# Check if a KeyError is raised
_func = lambda: dict_without_default["X"]["Y"]
self.assertRaises(KeyError, _func)
def test_importMPS_maximize(self):
name = self._testMethodName
prob = LpProblem(name, const.LpMaximize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
filename = name + ".mps"
prob.writeMPS(filename)
_vars, prob2 = LpProblem.fromMPS(filename, sense=prob.sense)
_dict1 = getSortedDict(prob)
_dict2 = getSortedDict(prob2)
print("\t Testing reading MPS files - maximize")
self.assertDictEqual(_dict1, _dict2)
def test_importMPS_noname(self):
name = self._testMethodName
prob = LpProblem("", const.LpMaximize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0)
w = LpVariable("w", 0)
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
filename = name + ".mps"
prob.writeMPS(filename)
_vars, prob2 = LpProblem.fromMPS(filename, sense=prob.sense)
_dict1 = getSortedDict(prob)
_dict2 = getSortedDict(prob2)
print("\t Testing reading MPS files - noname")
self.assertDictEqual(_dict1, _dict2)
def test_importMPS_integer(self):
name = self._testMethodName
prob = LpProblem(name, const.LpMinimize)
x = LpVariable("x", 0, 4)
y = LpVariable("y", -1, 1)
z = LpVariable("z", 0, None, const.LpInteger)
prob += 1.1 * x + 4.1 * y + 9.1 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7.5, "c3"
filename = name + ".mps"
prob.writeMPS(filename)
_vars, prob2 = LpProblem.fromMPS(filename, sense=prob.sense)
_dict1 = getSortedDict(prob)
_dict2 = getSortedDict(prob2)
print("\t Testing reading MPS files - integer variable")
self.assertDictEqual(_dict1, _dict2)
def test_importMPS_binary(self):
name = self._testMethodName
prob = LpProblem(name, const.LpMaximize)
dummy = LpVariable("dummy")
c1 = LpVariable("c1", 0, 1, const.LpBinary)
c2 = LpVariable("c2", 0, 1, const.LpBinary)
prob += dummy
prob += c1 + c2 == 2
prob += c1 <= 0
filename = name + ".mps"
prob.writeMPS(filename)
_vars, prob2 = LpProblem.fromMPS(
filename, sense=prob.sense, dropConsNames=True
)
_dict1 = getSortedDict(prob, keyCons="constant")
_dict2 = getSortedDict(prob2, keyCons="constant")
print("\t Testing reading MPS files - binary variable, no constraint names")
self.assertDictEqual(_dict1, _dict2)
def test_importMPS_RHS_fields56(self):
"""Import MPS file with RHS definitions in fields 5 & 6."""
with tempfile.NamedTemporaryFile(delete=False) as h:
h.write(str.encode(EXAMPLE_MPS_RHS56))
_, problem = LpProblem.fromMPS(h.name)
os.unlink(h.name)
self.assertEqual(problem.constraints["LIM2"].constant, -10)
# def test_importMPS_2(self):
# name = self._testMethodName
# # filename = name + ".mps"
# filename = "/home/pchtsp/Downloads/test.mps"
# _vars, _prob = LpProblem.fromMPS(filename)
# _prob.solve()
# for k, v in _vars.items():
# print(k, v.value())
def test_unset_objective_value__is_valid(self):
"""Given a valid problem that does not converge,
assert that it is still categorised as valid.
"""
name = self._testMethodName
prob = LpProblem(name, const.LpMaximize)
x = LpVariable("x")
prob += 0 * x
prob += x >= 1
pulpTestCheck(prob, self.solver, [const.LpStatusOptimal])
self.assertTrue(prob.valid())
def test_unbounded_problem__is_not_valid(self):
"""Given an unbounded problem, where x will tend to infinity
to maximise the objective, assert that it is categorised
as invalid."""
name = self._testMethodName
prob = LpProblem(name, const.LpMaximize)
x = LpVariable("x")
prob += 1000 * x
prob += x >= 1
self.assertFalse(prob.valid())
def test_infeasible_problem__is_not_valid(self):
"""Given a problem where x cannot converge to any value
given conflicting constraints, assert that it is invalid."""
name = self._testMethodName
prob = LpProblem(name, const.LpMaximize)
x = LpVariable("x")
prob += 1 * x
prob += x >= 2 # Constraint x to be more than 2
prob += x <= 1 # Constraint x to be less than 1
if self.solver.name in ["GUROBI_CMD"]:
pulpTestCheck(
prob,
self.solver,
[
const.LpStatusNotSolved,
const.LpStatusInfeasible,
const.LpStatusUndefined,
],
)
else:
pulpTestCheck(
prob,
self.solver,
[const.LpStatusInfeasible, const.LpStatusUndefined],
)
self.assertFalse(prob.valid())
def test_false_constraint(self):
prob = LpProblem(self._testMethodName, const.LpMinimize)
def add_const(prob):
prob += 0 - 3 == 0
self.assertRaises(TypeError, add_const, prob=prob)
@unittest.skipIf(platform.machine().startswith('arm'), reason="test known to fail on armel")
def test_measuring_solving_time(self):
print("\t Testing measuring optimization time")
time_limit = 10
solver_settings = dict(
PULP_CBC_CMD=30, COIN_CMD=30, SCIP_CMD=30, GUROBI_CMD=50, CPLEX_CMD=50
)
bins = solver_settings.get(self.solver.name)
if bins is None:
# not all solvers have timeLimit support
return
prob = create_bin_packing_problem(bins=bins, seed=99)
self.solver.timeLimit = time_limit
prob.solve(self.solver)
delta = 4
reported_time = prob.solutionTime
if self.solver.name in ["PULP_CBC_CMD", "COIN_CMD"]:
# CBC is less exact with the timeLimit
reported_time = prob.solutionCpuTime
delta = 5
self.assertAlmostEqual(
reported_time,
time_limit,
delta=delta,
msg="optimization time for solver {}".format(self.solver.name),
)
def test_invalid_var_names(self):
prob = LpProblem(self._testMethodName, const.LpMinimize)
x = LpVariable("a")
w = LpVariable("b")
y = LpVariable("g", -1, 1)
z = LpVariable("End")
prob += x + 4 * y + 9 * z, "obj"
prob += x + y <= 5, "c1"
prob += x + z >= 10, "c2"
prob += -y + z == 7, "c3"
prob += w >= 0, "c4"
print("\t Testing invalid var names")
pulpTestCheck(
prob, self.solver, [const.LpStatusOptimal], {x: 4, y: -1, z: 6, w: 0}
)
def test_LpVariable_indexs_param(self):
"""
Test that 'indexs' param continues to work
"""
prob = LpProblem(self._testMethodName, const.LpMinimize)
customers = [1, 2, 3]
agents = ["A", "B", "C"]
print("\t Testing 'indexs' param continues to work for LpVariable.dicts")
# explicit param creates a dict of type LpVariable
assign_vars = LpVariable.dicts(name="test", indexs=(customers, agents))
for k, v in assign_vars.items():
for a, b in v.items():
self.assertIsInstance(b, LpVariable)
# param by position creates a dict of type LpVariable
assign_vars = LpVariable.dicts("test", (customers, agents))
for k, v in assign_vars.items():
for a, b in v.items():
self.assertIsInstance(b, LpVariable)
print("\t Testing 'indexs' param continues to work for LpVariable.matrix")
# explicit param creates list of list of LpVariable
assign_vars_matrix = LpVariable.matrix(
name="test", indexs=(customers, agents)
)
for a in assign_vars_matrix:
for b in a:
self.assertIsInstance(b, LpVariable)
# param by position creates list of list of LpVariable
assign_vars_matrix = LpVariable.matrix("test", (customers, agents))
for a in assign_vars_matrix:
for b in a:
self.assertIsInstance(b, LpVariable)
def test_LpVariable_indices_param(self):
"""
Test that 'indices' argument works
"""
prob = LpProblem(self._testMethodName, const.LpMinimize)
customers = [1, 2, 3]
agents = ["A", "B", "C"]
print("\t Testing 'indices' argument works in LpVariable.dicts")
# explicit param creates a dict of type LpVariable
assign_vars = LpVariable.dicts(name="test", indices=(customers, agents))
for k, v in assign_vars.items():
for a, b in v.items():
self.assertIsInstance(b, LpVariable)
print("\t Testing 'indices' param continues to work for LpVariable.matrix")
# explicit param creates list of list of LpVariable
assign_vars_matrix = LpVariable.matrix(
name="test", indices=(customers, agents)
)
for a in assign_vars_matrix:
for b in a:
self.assertIsInstance(b, LpVariable)
def test_LpVariable_indexs_deprecation_logic(self):
"""
Test that logic put in place for deprecation handling of indexs works
"""
print(
"\t Test that logic put in place for deprecation handling of indexs works"
)
prob = LpProblem(self._testMethodName, const.LpMinimize)
customers = [1, 2, 3]
agents = ["A", "B", "C"]
with self.assertRaises(TypeError):
# both variables
assign_vars_matrix = LpVariable.dicts(
name="test",
indices=(customers, agents),
indexs=(customers, agents),
)
with self.assertRaises(TypeError):
# no variables
assign_vars_matrix = LpVariable.dicts(
name="test",
)
# Not supported in 2.7. Introduced to unittest in 3.2
# with self.assertWarns(DeprecationWarning):
# assign_vars_matrix = LpVariable.dicts(
# name="test",
# indexs=(customers, agents),
# )
def test_parse_cplex_mipopt_solution(self):
"""
Ensures `readsol` can parse CPLEX mipopt solutions (see issue #508).
"""
try:
from io import StringIO
except ImportError: # python 2
from StringIO import StringIO
print("\t Testing that `readsol` can parse CPLEX mipopt solution")
# Example solution generated by CPLEX mipopt solver
file_content = """<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<CPLEXSolution version="1.2">
<header
problemName="mipopt_solution_example.lp"
solutionName="incumbent"
solutionIndex="-1"
objectiveValue="442"
solutionTypeValue="3"
solutionTypeString="primal"
solutionStatusValue="101"
solutionStatusString="integer optimal solution"
solutionMethodString="mip"
primalFeasible="1"
dualFeasible="1"
MIPNodes="25471"
MIPIterations="282516"
writeLevel="1"/>
<quality
epInt="1.0000000000000001e-05"
epRHS="9.9999999999999995e-07"
maxIntInfeas="8.8817841970012523e-16"
maxPrimalInfeas="0"
maxX="48"
maxSlack="141"/>
<linearConstraints>
<constraint name="C1" index="0" slack="0"/>
<constraint name="C2" index="1" slack="0"/>
</linearConstraints>
<variables>
<variable name="x" index="0" value="42"/>
<variable name="y" index="1" value="0"/>
</variables>
<objectiveValues>
<objective index="0" name="x" value="42"/>
</objectiveValues>
</CPLEXSolution>
"""
try:
solution_file = StringIO(file_content)
except TypeError: # python 2
solution_file = StringIO(unicode(file_content))
# This call to `readsol` would crash for this solution format #508
_, _, reducedCosts, shadowPrices, _, _ = CPLEX_CMD().readsol(solution_file)
# Because mipopt solutions have no `reducedCost` fields
# it should be all None
self.assertTrue(all(c is None for c in reducedCosts.values()))
# Because mipopt solutions have no `shadowPrices` fields
# it should be all None
self.assertTrue(all(c is None for c in shadowPrices.values()))
class PULP_CBC_CMDTest(BaseSolverTest.PuLPTest):
solveInst = PULP_CBC_CMD
class CPLEX_CMDTest(BaseSolverTest.PuLPTest):
solveInst = CPLEX_CMD
class CPLEX_PYTest(BaseSolverTest.PuLPTest):
solveInst = CPLEX_CMD
class XPRESS_CMDTest(BaseSolverTest.PuLPTest):
solveInst = XPRESS_CMD
class XPRESS_PyTest(BaseSolverTest.PuLPTest):
solveInst = XPRESS_PY
class COIN_CMDTest(BaseSolverTest.PuLPTest):
solveInst = COIN_CMD
class COINMP_DLLTest(BaseSolverTest.PuLPTest):
solveInst = COINMP_DLL
class GLPK_CMDTest(BaseSolverTest.PuLPTest):
solveInst = GLPK_CMD
class GUROBITest(BaseSolverTest.PuLPTest):
solveInst = GUROBI
class GUROBI_CMDTest(BaseSolverTest.PuLPTest):
solveInst = GUROBI_CMD
class PYGLPKTest(BaseSolverTest.PuLPTest):
solveInst = PYGLPK
class YAPOSIBTest(BaseSolverTest.PuLPTest):
solveInst = YAPOSIB
class CHOCO_CMDTest(BaseSolverTest.PuLPTest):
solveInst = CHOCO_CMD
class MIPCL_CMDTest(BaseSolverTest.PuLPTest):
solveInst = MIPCL_CMD
class MOSEKTest(BaseSolverTest.PuLPTest):
solveInst = MOSEK
class SCIP_CMDTest(BaseSolverTest.PuLPTest):
solveInst = SCIP_CMD
class HiGHS_CMDTest(BaseSolverTest.PuLPTest):
solveInst = HiGHS_CMD
def pulpTestCheck(
prob,
solver,
okstatus,
sol=None,
reducedcosts=None,
duals=None,
slacks=None,
eps=10**-3,
status=None,
objective=None,
**kwargs
):
if status is None:
status = prob.solve(solver, **kwargs)
if status not in okstatus:
dumpTestProblem(prob)
raise PulpError(
"Tests failed for solver {}:\nstatus == {} not in {}\nstatus == {} not in {}".format(
solver,
status,
okstatus,
const.LpStatus[status],
[const.LpStatus[s] for s in okstatus],
)
)
if sol is not None:
for v, x in sol.items():
if abs(v.varValue - x) > eps:
dumpTestProblem(prob)
raise PulpError(
"Tests failed for solver {}:\nvar {} == {} != {}".format(
solver, v, v.varValue, x
)
)
if reducedcosts:
for v, dj in reducedcosts.items():
if abs(v.dj - dj) > eps:
dumpTestProblem(prob)
raise PulpError(
"Tests failed for solver {}:\nTest failed: var.dj {} == {} != {}".format(
solver, v, v.dj, dj
)
)
if duals:
for cname, p in duals.items():
c = prob.constraints[cname]
if abs(c.pi - p) > eps:
dumpTestProblem(prob)
raise PulpError(
"Tests failed for solver {}:\nconstraint.pi {} == {} != {}".format(
solver, cname, c.pi, p
)
)
if slacks:
for cname, slack in slacks.items():
c = prob.constraints[cname]
if abs(c.slack - slack) > eps:
dumpTestProblem(prob)
raise PulpError(
"Tests failed for solver {}:\nconstraint.slack {} == {} != {}".format(
solver, cname, c.slack, slack
)
)
if objective is not None:
z = prob.objective.value()
if abs(z - objective) > eps:
dumpTestProblem(prob)
raise PulpError(
"Tests failed for solver {}:\nobjective {} != {}".format(
solver, z, objective
)
)
def getSortedDict(prob, keyCons="name", keyVars="name"):
_dict = prob.toDict()
_dict["constraints"].sort(key=lambda v: v[keyCons])
_dict["variables"].sort(key=lambda v: v[keyVars])
return _dict
if __name__ == "__main__":
unittest.main()
|