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Pulp-or (referred to as pulp for the rest of this paper) is a linear programming framework
in Python. Pulp is licensed under a modi�ed BSD license. The aim of pulp is to allow
an Operations Research (OR) practitioner or programmer to express Linear Programming
(LP), and Integer Programming (IP) models in python in a way similar to the conventional
mathematical notation. Pulp will also solve these problems using a variety of free and non-free
LP solvers. Pulp models an LP in a natural and pythonic manner. This paper is aimed at the
python programmer who may wish to use pulp in their code. As such this paper contains a
short introduction to LP models and their uses.
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1 Introduction

Operations Research is known by the catch phrase �The science of better�. From the website [1]
we �nd this brief description

In a nutshell, operations research (O.R.) is the discipline of applying advanced analytical
methods to help make better decisions.

The particular area of operations research where pulp is useful is the development and modelling
of Linear Programming (LP) and Integer Programming (IP) problems. Mathematically, an LP
problem is to �nd a point in a n-dimensional linearly constrained region that maximises a given
linear objective function. IP is an LP where the solution must contain discrete variables which take
an integer value at the solution, a common special case of an integer variable is a binary variable
which must be either 0 or 1 at the solution.

In general terms, an LP can describe a problem were decisions must be made (for example,
the quantity of each ingredient in a can of cat food, detailed in section 2.1). These decisions are
constrained by the properties of the problem that they model (the total weight of ingredients must
be 100 grams and dietary requirements must be met). The quality of a solution is determined by
some sort of cost (the total dollar cost to produce the can) and you seek to minimise or maximise
the cost subject to the constraints.

2 A Brief introduction to Linear Programming

In this section we will introduce the reader to the structure of an LP problem and show the syntax
used to formulate these models in pulp. The following is a example LP motivated by a real-world
case-study. In general, problems of this sort are called `diet' or `blending' problems. An extensive
set of case studies (including those below) can be found in [2].
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2.1 The Whiskas Cat Food Problem (whiskas.py)

Figure 1: A Whiskas cat food label.

Whiskas cat food, shown above, is manufactured by Uncle Ben's. Uncle Ben's want to produce
their cat food products as cheaply as possible while ensuring they meet the stated nutritional
analysis requirements shown on the cans. Thus they want to vary the quantities of each ingredient
used (the main ingredients being chicken, beef, mutton, rice, wheat and gel) while still meeting
their nutritional standards.

Figure 2: Detail of ingredients and nutritional requirements.

Figure 3: The quantity of each ingredient must be determined.

The costs of the chicken, beef, and mutton are $0.013, $0.008 and $0.010 respectively, while
the costs of the rice, wheat and gel are $0.002, $0.005 and $0.001 respectively. (All costs are per
gram.) For this exercise we will ignore the vitamin and mineral ingredients. (Any costs for these
are likely to be very small anyway.) Each ingredient contributes to the total weight of protein, fat,
�bre and salt in the �nal product which must be 100g (very convenient). The contributions (in
grams) per gram of ingredient are given in the table below.
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Protein Fat Fibre Salt
Chicken 0.100 0.080 0.001 0.002
Beef 0.200 0.100 0.005 0.005
Rice 0.000 0.010 0.100 0.008
Wheat bran 0.040 0.010 0.150 0.000

Table 1: Table of ingredient compositions.

A Linear Program consists of three main parts. These are the variable de�nitions, the objective
function and the constraints.

2.1.1 Variable de�nition

In this problem the variables will be de�ned as the quantity (in grams) of each ingredient to include
in the can. These variables will be continuous and will be able to take any non-negative value.
Mathematically, we de�ne set I as the set of ingredients then create an x variable indexed by I

I = {chicken, beef, mutton, rice, wheat, gel}
xi ≥ 0 i ∈ I.

4 import pulp

6 #initialise the model
7 whiskas_model = pulp.LpProblem(’The Whiskas Problem’, pulp.LpMinimize)
8 # make a list of ingredients
9 ingredients = [’chicken’, ’beef’, ’mutton’, ’rice’, ’wheat’, ’gel’]
10 # create a dictionary of pulp variables with keys from ingredients
11 # the default lower bound is -inf
12 x = pulp.LpVariable.dict(’x_%s’, ingredients, lowBound =0)

2.1.2 Objective Function

The objective function is to minimise the cost of production for each can.

min
∑

i

cixi.

Where:

• ci is the cost per gram of ingredient i.

14 # cost data
15 cost = dict(zip(ingredients, [0.013, 0.008, 0.010, 0.002, 0.005, 0.001]))
16 # create the objective
17 whiskas_model += sum( [cost[i] * x[i] for i in ingredients])

2.1.3 Constraints

Constraints serve to control the total mass of the ingredients and to model the protein, fat, salt
and �bre requirements.
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∑
i

xi = 100 can mass∑
i

pixi ≥ 8.0 protein∑
i

fixi ≥ 6.0 fat∑
i

bixi ≤ 2.0 �bre∑
i

sixi ≤ 0.4 salt.

Where:

• pi is the protein per gram of ingredient i;

• fi is the fat per gram of ingredient i;

• bi is the �bre per gram of ingredient i;

• si is the salt per gram of ingredient i.

19 # ingredient parameters
20 protein = dict(zip(ingredients, [0.100, 0.200, 0.150, 0.000, 0.040, 0.000]))
21 fat = dict(zip(ingredients, [0.080, 0.100, 0.110, 0.010, 0.010, 0.000]))
22 fibre = dict(zip(ingredients, [0.001, 0.005, 0.003, 0.100, 0.150, 0.000]))
23 salt = dict(zip(ingredients, [0.002, 0.005, 0.007, 0.002, 0.008, 0.000]))

25 #note these are constraints and not an objective as there is a equality/inequality
26 whiskas_model += sum([protein[i]*x[i] for i in ingredients]) >= 8.0
27 whiskas_model += sum([fat[i]*x[i] for i in ingredients]) >= 6.0
28 whiskas_model += sum([fibre[i]*x[i] for i in ingredients]) <= 2.0
29 whiskas_model += sum([salt[i]*x[i] for i in ingredients]) <= 0.4

The pulp model must now be solved with some third party optimisation software. Pulp currently
supports solving with coin-or [3], glpk [4], CPLEX [5] and Gurobi [6]. The pulp download includes
compiled versions of the coin-or solver for ubuntu and windows computers.

31 #problem is then solved with the default solver
32 whiskas_model.solve()

34 #print the result
35 for ingredient in ingredients:
36 print ’The mass of %s is %s grams per can’%(ingredient,
37 x[ingredient].value())

3 Other Example LP models

Modelling the diet problem is not the only application of linear programming. Other examples
include:

• the transportation problem,

• the set partitioning problem,

• the assignment problem,
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• the knapsack problem.

In this section we will give short examples of the �rst two problems modelled in pulp together with
a brief description.

3.1 The Transportation Problem (beerdistribution.py)

A transportation problem involves that shipment of items from a set of sources to a set of sinks
(the sources and sinks must be disjoint sets), the problem seeks to minimise the cost of shipping.
In this case-study crates of beer must be shipped from two breweries to �ve bars.

Figure 4: The brewery and bar capacities and possible routes.

The problem is created.

37 # Creates the ’prob’ variable to contain the problem data
38 prob = pulp.LpProblem("Beer Distribution Problem", pulp.LpMinimize)

A list of possible routes for transportation is created:

40 # Creates a list of tuples containing all the possible routes for transport
41 routes = [(w,b) for w in warehouses for b in bars]

The variables created determine the amount shipped on each route. The variables are de�ned
as pulp.LpInteger therefore solutions must not ship fractional numbers of crates.

43 # A dictionary called x is created to contain quantity shipped on the routes
44 x = pulp.LpVariable.dicts("route", (warehouses, bars),
45 lowBound = 0
46 cat = pulp.LpInteger)

The objective is to minimise the total shipping cost of the solution.

48 # The objective function is added to ’prob’ first
49 prob += sum([x[w][b]*costs[w][b] for (w,b) in routes]), \
50 "Sum_of_Transporting_Costs"

These constraints ensure that amount shipped from each brewery is less than the supply avail-
able. The names given to the constraints will be preserved when an `.lp' �le is created.

52 # Supply maximum constraints are added to prob for each supply node (warehouse)
53 for w in warehouses:
54 prob += sum([x[w][b] for b in bars]) <= supply[w], \
55 "Sum_of_Products_out_of_Warehouse_%s"%w

These constraints ensure that amount shipped to each bar is greater than the demand of the
bar. These could also be equality constraints, depending on how the problem is modelled.
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57 # Demand minimum constraints are added to prob for each demand node (bar)
58 for b in bars:
59 prob += sum([x[w][b] for w in warehouses]) >= demand[b], \
60 "Sum_of_Products_into_Bar%s"%b

3.2 The Set Partitioning Problem (wedding.py)

A set partitioning problem determines how the items in one set (S) can be partitioned into smaller
subsets. All items in S must be contained in one and only one partition. Related problems are:

• set packing - all items must be contained in zero or one partitions;

• set covering - all items must be contained in at least one partition.

In this case study a wedding planner must determine guest seating allocations for a wedding. To
model this problem the tables are modelled as the partitions and the guests invited to the wedding
are modelled as the elements of S. The wedding planner wishes to maximise the total happiness of
all of the tables.

A set partitioning problem may be modelled by explicitly enumerating each possible subset.
Though this approach does become intractable for large numbers of items (without using column
generation [7]) it does have the advantage that the objective function co-e�cients for the partitions
can be non-linear expressions (like happiness) and still allow this problem to be solved using Linear
Programming.

First we use pulp.allcombinations to generate a list of all possible table seatings.

20 #create list of all possible tables
21 possible_tables = [tuple(c) for c in pulp.allcombinations(guests,
22 max_table_size)]

Then we create a binary variable that will be 1 if the table will be in the solution, or zero
otherwise.

24 #create a binary variable to state that a table setting is used
25 x = pulp.LpVariable.dicts(’table’, possible_tables,
26 lowBound = 0,
27 upBound = 1,
28 cat = pulp.LpInteger)

We create the LpProblem and then make the objective function. Note that happiness function
used in this script would be di�cult to model in any other way.

30 seating_model = pulp.LpProblem("Wedding Seating Model", pulp.LpMinimize)

32 seating_model += sum([happiness(table) * x[table] for table in possible_tables])

We specify the total number of tables allowed in the solution.

34 #specify the maximum number of tables
35 seating_model += sum([x[table] for table in possible_tables]) <= max_tables, \

This set of constraints de�nes the set partitioning problem by guaranteeing that a guest is
allocated to exactly one table.

38 #A guest must seated at one and only one table
39 for guest in guests:
40 seating_model += sum([x[table] for table in possible_tables
41 if guest in table]) == 1, "Must_seat_%s"%guest
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4 Why pulp

Modelling problems using LP and solving them with pulp can be a very useful approach for the
python programmer. This approach allows the programmer to focus on the modelling rather than
the algorithms that �nd the solution. The third party LP solvers that pulp interfaces with are
all mature pieces of software that can be trusted to produce the correct solution to the model
created in pulp. The di�erence between these solvers, for a user of pulp, lies mainly in the trade
o� between cost of the solver and its speed to �nd a solution.

LP and IP are well researched areas of mathematics, therefore once a problem is stated as an
LP model it is possible to guarantee some properties of the solutions given. For instance, if the
solver delivers an optimal solution it will be impossible for someone to create a solution that is
better (as measured by the objective function).

Compared to other LP modelling tools including AMPL [8], GAMS [9], mathprog [4], �opc++
[10], and pyomo [11] and poams; pulp o�ers a number of advantages. These include its:

• non-restrictive licensing;

• ease of installation;

• clear syntax;

• interoperability with an number of solvers;

• extensive documentation.

4.1 Licensing

The licensing of pulp under a permissive open-source license allows pulp to be used as a medium
for teaching operations research as students can download and use pulp for free. The license allows
OR practitioners to integrate pulp in commercial applications for their clients without disclosing
how the problem was solved. The license also allows advanced users to modify and improve pulp
for their own purposes.

4.2 Installation

Pulp is very easy to install. The provision of a setup.py �le and registration on pipy, allows the
user to use

$easy_install pulp-or

to download and install pulp on their system. For windows and ubuntu users this binary package
also includes the coin-or [3] solver so pulp will be immediately functional. For users on other
platforms a compatible solver must be installed for a pulp model to be solved.

4.3 Syntax

Ideally an LP modelling framework will allow a one-to-one translation of symbols from mathemat-
ical notation. If the syntax follows the formulation the programmer can ensure that the model
written is the model required. The OR practitioner can also quickly read and understand the
a model as written pulp, without having much python background. The standard mathematical
notation is very concise and therefore code that mimics it will also be clear and concise.

The use of a `Pythonic' construction of the pulp framework allows the programmer to use it
easily in a variety of ways. Pulp can be directly imported into the local name-space (against python
style) to allow simple LP models to be written by non-programmers, in fact most of the case studies
on the wiki [2] use this style. Pulp also does not force the programmer to use any particular way
to store parameter data. Parameter data can be stored as lists, dictionaries or custom classes.
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4.4 Interoperability

The ability for pulp to call a number of free and non-free solvers is important as the OR practitioner
often wishes to compare the solution of a problem with a variety of solvers. The user may wish to
develop simple LP models in a free solver and then provide a solution to a client using a commercial
solver. The use of non-free solvers may dramatically reduce the solution time of the model. Pulp
allows the free interchange of solvers without much change in the program, only a parameter for
the LpProblem.solve function is changed.

4.5 Documentation

Pulp is supplied with a user guide with extensive examples (in fact it was converted from a course
teaching LP modelling). This user guide and the permissive license were intended to make pulp
useful to the largest possible audience.

5 Conclusion

In conclusion pulp nicely bridges the gap between the OR practitioner and the python programmer.
This allows the OR practitioner to use python to quickly develop and solve LP and IP models
while having access to all of the tools available in the python standard library. The python
programmer can now embed LP models in complex programs written in python. So next time
you �nd yourself hacking up an algorithm to solve some problem in your code please consider if it
would be appropriate to model this problem as an LP or IP instead. If so download and use pulp.

Appendix - Example Code in full

whiskas.py

1 """
2 Example problem file that solves the whiskas blending problem
3 """
4 import pulp

6 #initialise the model
7 whiskas_model = pulp.LpProblem(’The Whiskas Problem’, pulp.LpMinimize)
8 # make a list of ingredients
9 ingredients = [’chicken’, ’beef’, ’mutton’, ’rice’, ’wheat’, ’gel’]
10 # create a dictionary of pulp variables with keys from ingredients
11 # the default lower bound is -inf
12 x = pulp.LpVariable.dict(’x_%s’, ingredients, lowBound =0)

14 # cost data
15 cost = dict(zip(ingredients, [0.013, 0.008, 0.010, 0.002, 0.005, 0.001]))
16 # create the objective
17 whiskas_model += sum( [cost[i] * x[i] for i in ingredients])

19 # ingredient parameters
20 protein = dict(zip(ingredients, [0.100, 0.200, 0.150, 0.000, 0.040, 0.000]))
21 fat = dict(zip(ingredients, [0.080, 0.100, 0.110, 0.010, 0.010, 0.000]))
22 fibre = dict(zip(ingredients, [0.001, 0.005, 0.003, 0.100, 0.150, 0.000]))
23 salt = dict(zip(ingredients, [0.002, 0.005, 0.007, 0.002, 0.008, 0.000]))

25 #note these are constraints and not an objective as there is a equality/inequality
26 whiskas_model += sum([protein[i]*x[i] for i in ingredients]) >= 8.0
27 whiskas_model += sum([fat[i]*x[i] for i in ingredients]) >= 6.0
28 whiskas_model += sum([fibre[i]*x[i] for i in ingredients]) <= 2.0
29 whiskas_model += sum([salt[i]*x[i] for i in ingredients]) <= 0.4
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31 #problem is then solved with the default solver
32 whiskas_model.solve()

34 #print the result
35 for ingredient in ingredients:
36 print ’The mass of %s is %s grams per can’%(ingredient,
37 x[ingredient].value())

beerdistribution.py

1 """
2 The Beer Distribution Problem for the PuLP Modeller

4 Authors: Antony Phillips, Dr Stuart Mitchell 2007
5 """

7 # Import PuLP modeler functions
8 import pulp

10 # Creates a list of all the supply nodes
11 warehouses = ["A", "B"]

13 # Creates a dictionary for the number of units of supply for each supply node
14 supply = {"A": 1000,
15 "B": 4000}

17 # Creates a list of all demand nodes
18 bars = ["1", "2", "3", "4", "5"]

20 # Creates a dictionary for the number of units of demand for each demand node
21 demand = {"1":500,
22 "2":900,
23 "3":1800,
24 "4":200,
25 "5":700,}

27 # Creates a list of costs of each transportation path
28 costs = [ #Bars
29 #1 2 3 4 5
30 [2,4,5,2,1],#A Warehouses
31 [3,1,3,2,3] #B
32 ]

34 # The cost data is made into a dictionary
35 costs = pulp.makeDict([warehouses, bars], costs,0)

37 # Creates the ’prob’ variable to contain the problem data
38 prob = pulp.LpProblem("Beer Distribution Problem", pulp.LpMinimize)

40 # Creates a list of tuples containing all the possible routes for transport
41 routes = [(w,b) for w in warehouses for b in bars]

43 # A dictionary called x is created to contain quantity shipped on the routes
44 x = pulp.LpVariable.dicts("route", (warehouses, bars),
45 lowBound = 0
46 cat = pulp.LpInteger)

48 # The objective function is added to ’prob’ first
49 prob += sum([x[w][b]*costs[w][b] for (w,b) in routes]), \
50 "Sum_of_Transporting_Costs"

52 # Supply maximum constraints are added to prob for each supply node (warehouse)
53 for w in warehouses:
54 prob += sum([x[w][b] for b in bars]) <= supply[w], \
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55 "Sum_of_Products_out_of_Warehouse_%s"%w

57 # Demand minimum constraints are added to prob for each demand node (bar)
58 for b in bars:
59 prob += sum([x[w][b] for w in warehouses]) >= demand[b], \
60 "Sum_of_Products_into_Bar%s"%b

62 # The problem data is written to an .lp file
63 prob.writeLP("BeerDistributionProblem.lp")

65 # The problem is solved using PuLP’s choice of Solver
66 prob.solve()

68 # The status of the solution is printed to the screen
69 print "Status:", pulp.LpStatus[prob.status]

71 # Each of the variables is printed with it’s resolved optimum value
72 for v in prob.variables():
73 print v.name, "=", v.varValue

75 # The optimised objective function value is printed to the screen
76 print "Total Cost of Transportation = ", prob.objective.value()

wedding.py

1 """
2 A set partitioning model of a wedding seating problem

4 Authors: Stuart Mitchell 2009
5 """

7 import pulp

9 max_tables = 5
10 max_table_size = 4
11 guests = ’A B C D E F G I J K L M N O P Q R’.split()

13 def happiness(table):
14 """
15 Find the happiness of the table
16 - by calculating the maximum distance between the letters
17 """
18 return abs(ord(table[0]) - ord(table[-1]))

20 #create list of all possible tables
21 possible_tables = [tuple(c) for c in pulp.allcombinations(guests,
22 max_table_size)]

24 #create a binary variable to state that a table setting is used
25 x = pulp.LpVariable.dicts(’table’, possible_tables,
26 lowBound = 0,
27 upBound = 1,
28 cat = pulp.LpInteger)

30 seating_model = pulp.LpProblem("Wedding Seating Model", pulp.LpMinimize)

32 seating_model += sum([happiness(table) * x[table] for table in possible_tables])

34 #specify the maximum number of tables
35 seating_model += sum([x[table] for table in possible_tables]) <= max_tables, \
36 "Maximum_number_of_tables"

38 #A guest must seated at one and only one table
39 for guest in guests:
40 seating_model += sum([x[table] for table in possible_tables
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41 if guest in table]) == 1, "Must_seat_%s"%guest

43 seating_model.solve()

45 print "The choosen tables are:"
46 for table in possible_tables:
47 if x[table].value() == 1.0:
48 print table
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