1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
# -*- coding: utf-8 -*-
from jupyter_client.manager import start_new_kernel
from jupyter_client import KernelManager
from nbformat.v4 import output_from_msg
import os
from .. import config
from .base import PwebProcessorBase
from . import subsnippets
from IPython.core import inputsplitter
from ipykernel.inprocess import InProcessKernelManager
from queue import Empty
class JupyterProcessor(PwebProcessorBase):
"""Generic Jupyter processor, should work with any kernel"""
def __init__(self, parsed, kernel, source, mode,
figdir, outdir, embed_kernel=False):
super(JupyterProcessor, self).__init__(parsed, kernel, source, mode,
figdir, outdir)
self.extra_arguments = None
self.timeout = -1
path = os.path.abspath(outdir)
if embed_kernel:
km = InProcessKernelManager(kernel_name=kernel)
else:
km = KernelManager(kernel_name=kernel)
km.start_kernel(cwd=path, stderr=open(os.devnull, 'w'))
kc = km.client()
kc.start_channels()
try:
kc.wait_for_ready()
except RuntimeError:
print("Timeout from starting kernel\nTry restarting python session and running weave again")
kc.stop_channels()
km.shutdown_kernel()
raise
self.km = km
self.kc = kc
self.kc.allow_stdin = False
def close(self):
self.kc.stop_channels()
self.km.shutdown_kernel()
def run_cell(self, src):
cell = {}
cell["source"] = src.lstrip()
msg_id = self.kc.execute(src.lstrip(), store_history=False)
# wait for finish, with timeout
while True:
try:
timeout = self.timeout
if timeout < 0:
timeout = None
msg = self.kc.get_shell_msg(timeout=timeout)
except Empty:
if self.interrupt_on_timeout:
self.km.interrupt_kernel()
break
else:
try:
exception = TimeoutError
except NameError:
exception = RuntimeError
raise exception(
"Cell execution timed out, see log for details.")
if msg['parent_header'].get('msg_id') == msg_id:
break
else:
# not our reply
continue
outs = []
while True:
try:
# We've already waited for execute_reply, so all output
# should already be waiting. However, on slow networks, like
# in certain CI systems, waiting < 1 second might miss messages.
# So long as the kernel sends a status:idle message when it
# finishes, we won't actually have to wait this long, anyway.
msg = self.kc.iopub_channel.get_msg(block=True, timeout=4)
except Empty:
print("Timeout waiting for IOPub output\nTry restarting python session and running weave again")
raise RuntimeError("Timeout waiting for IOPub output")
#stdout from InProcessKernelManager has no parent_header
if msg['parent_header'].get('msg_id') != msg_id and msg['msg_type'] != "stream":
continue
msg_type = msg['msg_type']
content = msg['content']
# set the prompt number for the input and the output
if 'execution_count' in content:
cell['execution_count'] = content['execution_count']
if msg_type == 'status':
if content['execution_state'] == 'idle':
break
else:
continue
elif msg_type == 'execute_input':
continue
elif msg_type == 'clear_output':
outs = []
continue
elif msg_type.startswith('comm'):
continue
try:
out = output_from_msg(msg)
except ValueError:
print("unhandled iopub msg: " + msg_type)
else:
outs.append(out)
return outs
def loadstring(self, code_str, **kwargs):
return self.run_cell(code_str)
#Yes same format for compatibility even if term is not implemented
def loadterm(self, code_str, **kwargs):
return((sources, self.run_cell(code_str)))
#TODO add support for "rich" output
#Requires storing the results for formatter
def load_inline_string(self, code_string):
from nbconvert import filters
outputs = self.loadstring(code_string)
result = ""
for out in outputs:
if out["output_type"] == "stream":
result += out["text"]
elif out["output_type"] == "error":
result += filters.strip_ansi("".join(out["traceback"]))
elif "text/plain" in out["data"]:
result += out["data"]["text/plain"]
else:
result = ""
return result
class IPythonProcessor(JupyterProcessor):
"""Contains IPython specific functions"""
def __init__(self, *args):
kernel = args[1]
if kernel == "python3":
embed = True
else:
embed = False
super(IPythonProcessor, self).__init__(*args, embed_kernel=embed)
if config.rcParams["usematplotlib"]:
self.init_matplotlib()
def init_matplotlib(self):
self.loadstring(subsnippets.init_matplotlib)
def pre_run_hook(self, chunk):
f_size = """matplotlib.rcParams.update({"figure.figsize" : (%i, %i)})""" % chunk["f_size"]
f_dpi = """matplotlib.rcParams.update({"figure.dpi" : %i})""" % chunk["dpi"]
self.loadstring("\n".join([f_size, f_dpi]))
def loadterm(self, code_str, **kwargs):
splitter = inputsplitter.IPythonInputSplitter()
code_lines = code_str.lstrip().splitlines()
sources = []
outputs = []
for line in code_lines:
if splitter.push_accepts_more():
splitter.push(line)
else:
code_str = splitter.source
sources.append(code_str)
out = self.loadstring(code_str)
#print(out)
outputs.append(out)
splitter.reset()
splitter.push(line)
if splitter.source != "":
code_str = splitter.source
sources.append(code_str)
out = self.loadstring(code_str)
outputs.append(out)
return((sources, outputs))
|