1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
Metadata-Version: 2.1
Name: py-zipkin
Version: 1.2.8
Summary: Library for using Zipkin in Python.
Home-page: https://github.com/Yelp/py_zipkin
Author: Yelp, Inc.
Author-email: opensource+py-zipkin@yelp.com
License: Copyright Yelp 2019
Description: [](https://travis-ci.org/Yelp/py_zipkin)
[](https://coveralls.io/r/Yelp/py_zipkin)
[](https://pypi.python.org/pypi/py_zipkin/)
[](https://pypi.python.org/pypi/py_zipkin/)
py_zipkin
---------
py_zipkin provides a context manager/decorator along with some utilities to
facilitate the usage of Zipkin in Python applications.
Install
-------
```
pip install py_zipkin
```
Usage
-----
py_zipkin requires a `transport_handler` object that handles logging zipkin
messages to a central logging service such as kafka or scribe.
`py_zipkin.zipkin.zipkin_span` is the main tool for starting zipkin traces or
logging spans inside an ongoing trace. zipkin_span can be used as a context
manager or a decorator.
#### Usage #1: Start a trace with a given sampling rate
```python
from py_zipkin.zipkin import zipkin_span
def some_function(a, b):
with zipkin_span(
service_name='my_service',
span_name='my_span_name',
transport_handler=some_handler,
port=42,
sample_rate=0.05, # Value between 0.0 and 100.0
):
do_stuff(a, b)
```
#### Usage #2: Trace a service call
The difference between this and Usage #1 is that the zipkin_attrs are calculated
separately and passed in, thus negating the need of the sample_rate param.
```python
# Define a pyramid tween
def tween(request):
zipkin_attrs = some_zipkin_attr_creator(request)
with zipkin_span(
service_name='my_service',
span_name='my_span_name',
zipkin_attrs=zipkin_attrs,
transport_handler=some_handler,
port=22,
) as zipkin_context:
response = handler(request)
zipkin_context.update_binary_annotations(
some_binary_annotations)
return response
```
#### Usage #3: Log a span inside an ongoing trace
This can be also be used inside itself to produce continuously nested spans.
```python
@zipkin_span(service_name='my_service', span_name='some_function')
def some_function(a, b):
return do_stuff(a, b)
```
#### Other utilities
`zipkin_span.update_binary_annotations()` can be used inside a zipkin trace
to add to the existing set of binary annotations.
```python
def some_function(a, b):
with zipkin_span(
service_name='my_service',
span_name='some_function',
transport_handler=some_handler,
port=42,
sample_rate=0.05,
) as zipkin_context:
result = do_stuff(a, b)
zipkin_context.update_binary_annotations({'result': result})
```
`zipkin_span.add_sa_binary_annotation()` can be used to add a binary annotation
to the current span with the key 'sa'. This function allows the user to specify the
destination address of the service being called (useful if the destination doesn't
support zipkin). See http://zipkin.io/pages/data_model.html for more information on the
'sa' binary annotation.
> NOTE: the V2 span format only support 1 "sa" endpoint (represented by remoteEndpoint)
> so `add_sa_binary_annotation` now raises `ValueError` if you try to set multiple "sa"
> annotations for the same span.
```python
def some_function():
with zipkin_span(
service_name='my_service',
span_name='some_function',
transport_handler=some_handler,
port=42,
sample_rate=0.05,
) as zipkin_context:
make_call_to_non_instrumented_service()
zipkin_context.add_sa_binary_annotation(
port=123,
service_name='non_instrumented_service',
host='12.34.56.78',
)
```
`create_http_headers_for_new_span()` creates a set of HTTP headers that can be forwarded
in a request to another service.
```python
headers = {}
headers.update(create_http_headers_for_new_span())
http_client.get(
path='some_url',
headers=headers,
)
```
Transport
---------
py_zipkin (for the moment) thrift-encodes spans. The actual transport layer is
pluggable, though.
The recommended way to implement a new transport handler is to subclass
`py_zipkin.transport.BaseTransportHandler` and implement the `send` and
`get_max_payload_bytes` methods.
`send` receives an already encoded thrift list as argument.
`get_max_payload_bytes` should return the maximum payload size supported by your
transport, or `None` if you can send arbitrarily big messages.
The simplest way to get spans to the collector is via HTTP POST. Here's an
example of a simple HTTP transport using the `requests` library. This assumes
your Zipkin collector is running at localhost:9411.
> NOTE: older versions of py_zipkin suggested implementing the transport handler
> as a function with a single argument. That's still supported and should work
> with the current py_zipkin version, but it's deprecated.
```python
import requests
from py_zipkin.transport import BaseTransportHandler
class HttpTransport(BaseTransportHandler):
def get_max_payload_bytes(self):
return None
def send(self, encoded_span):
# The collector expects a thrift-encoded list of spans.
requests.post(
'http://localhost:9411/api/v1/spans',
data=encoded_span,
headers={'Content-Type': 'application/x-thrift'},
)
```
If you have the ability to send spans over Kafka (more like what you might do
in production), you'd do something like the following, using the
[kafka-python](https://pypi.python.org/pypi/kafka-python) package:
```python
from kafka import SimpleProducer, KafkaClient
from py_zipkin.transport import BaseTransportHandler
class KafkaTransport(BaseTransportHandler):
def get_max_payload_bytes(self):
# By default Kafka rejects messages bigger than 1000012 bytes.
return 1000012
def send(self, message):
kafka_client = KafkaClient('{}:{}'.format('localhost', 9092))
producer = SimpleProducer(kafka_client)
producer.send_messages('kafka_topic_name', message)
```
Using in multithreading environments
------------------------------------
If you want to use py_zipkin in a cooperative multithreading environment,
e.g. asyncio, you need to explicitly pass an instance of `py_zipkin.storage.Stack`
as parameter `context_stack` for `zipkin_span` and `create_http_headers_for_new_span`.
By default, py_zipkin uses a thread local storage for the attributes, which is
defined in `py_zipkin.storage.ThreadLocalStack`.
Additionally, you'll also need to explicitly pass an instance of
`py_zipkin.storage.SpanStorage` as parameter `span_storage` to `zipkin_span`.
```python
from py_zipkin.zipkin import zipkin_span
from py_zipkin.storage import Stack
from py_zipkin.storage import SpanStorage
def my_function():
context_stack = Stack()
span_storage = SpanStorage()
await my_function(context_stack, span_storage)
async def my_function(context_stack, span_storage):
with zipkin_span(
service_name='my_service',
span_name='some_function',
transport_handler=some_handler,
port=42,
sample_rate=0.05,
context_stack=context_stack,
span_storage=span_storage,
):
result = do_stuff(a, b)
```
Firehose mode [EXPERIMENTAL]
----------------------------
"Firehose mode" records 100% of the spans, regardless of
sampling rate. This is useful if you want to treat these spans
differently, e.g. send them to a different backend that has limited
retention. It works in tandem with normal operation, however there may
be additional overhead. In order to use this, you add a
`firehose_handler` just like you add a `transport_handler`.
This feature should be considered experimental and may be removed at
any time without warning. If you do use this, be sure to send
asynchronously to avoid excess overhead for every request.
License
-------
Copyright (c) 2018, Yelp, Inc. All Rights reserved. Apache v2
1.2.8 (2023-03-23)
-------------------
- Add back exports in py_zipkin.encoding
- Fix mypy tests
1.2.7 (2023-02-06)
-------------------
- Drop support for Python 3.6
1.2.6 (2023-02-06)
-------------------
- Drop support for V1_THRIFT encoding
1.0.0 (2022-06-09)
-------------------
- Droop Python 2.7 support (minimal supported python version is 3.5)
- Recompile protobuf using version 3.19
0.21.0 (2021-03-17)
-------------------
- The default encoding is now V2 JSON. If you want to keep the old
V1 thrift encoding you'll need to specify it.
0.20.2 (2021-03-11)
-------------------
- Don't crash when annotating exceptions that cannot be str()'d
0.20.1 (2020-10-27)
-------------------
- Support PRODUCER and CONSUMER spans
0.20.0 (2020-03-09)
-------------------
- Add create_http_headers helper
0.19.0 (2020-02-28)
-------------------
- Add zipkin_span.add_annotation() method
- Add autoinstrumentation for python Threads
- Allow creating a copy of Tracer
- Add extract_zipkin_attrs_from_headers() helper
0.18.7 (2020-01-15)
-------------------
- Expose encoding.create_endpoint helper
0.18.6 (2019-09-23)
-------------------
- Ensure tags are strings when using V2_JSON encoding
0.18.5 (2019-08-08)
-------------------
- Add testing.MockTransportHandler module
0.18.4 (2019-08-02)
-------------------
- Fix thriftpy2 import to allow cython module
0.18.3 (2019-05-15)
-------------------
- Fix unicode bug when decoding thrift tag strings
0.18.2 (2019-03-26)
-------------------
- Handled exception while emitting trace and log the error
- Ensure tracer is cleared regardless span of emit outcome
0.18.1 (2019-02-22)
-------------------
- Fix ThreadLocalStack() bug introduced in 0.18.0
0.18.0 (2019-02-13)
-------------------
- Fix multithreading issues
- Added Tracer module
0.17.1 (2019-02-05)
-------------------
- Ignore transport_handler overrides in an inner span since that causes
spans to be dropped.
0.17.0 (2019-01-25)
-------------------
- Support python 3.7
- py-zipkin now depends on thriftpy2 rather than thriftpy. They
can coexist in the same codebase, so it should be safe to upgrade.
0.16.1 (2018-11-16)
-------------------
- Handle null timestamps when decoding thrift traces
0.16.0 (2018-11-13)
-------------------
- py_zipkin is now able to convert V1 thrift spans to V2 JSON
0.15.1 (2018-10-31)
-------------------
- Changed DeprecationWarnings to logging.warning
0.15.0 (2018-10-22)
-------------------
- Added support for V2 JSON encoding.
- Fixed TransportHandler bug that was affecting also V1 JSON.
0.14.1 (2018-10-09)
-------------------
- Fixed memory leak introduced in 0.13.0.
0.14.0 (2018-10-01)
-------------------
- Support JSON encoding for V1 spans.
- Allow overriding the span_name after creation.
0.13.0 (2018-06-25)
-------------------
- Removed deprecated `zipkin_logger.debug()` interface.
- `py_zipkin.stack` was renamed as `py_zipkin.storage`. If you were
importing this module, you'll need to update your code.
0.12.0 (2018-05-29)
-------------------
- Support max payload size for transport handlers.
- Transport handlers should now be implemented as classes
extending py_zipkin.transport.BaseTransportHandler.
0.11.2 (2018-05-23)
-------------------
- Don't overwrite passed in annotations
0.11.1 (2018-05-23)
-------------------
- Add binary annotations to the span even if the request is not being
sampled. This fixes binary annotations for firehose spans.
0.11.0 (2018-02-08)
-------------------
- Add support for "firehose mode", which logs 100% of the spans
regardless of sample rate.
0.10.1 (2018-02-05)
-------------------
- context_stack will now default to `ThreadLocalStack()` if passed as
`None`
0.10.0 (2018-02-05)
-------------------
- Add support for using explicit in-process context storage instead of
using thread_local. This allows you to use py_zipkin in cooperative
multitasking environments e.g. asyncio
- `py_zipkin.thread_local` is now deprecated. Instead use
`py_zipkin.stack.ThreadLocalStack()`
- TraceId and SpanId generation performance improvements.
- 128-bit TraceIds now start with an epoch timestamp to support easy
interop with AWS X-Ray
0.9.0 (2017-07-31)
------------------
- Add batch span sending. Note that spans are now sent in lists.
0.8.3 (2017-07-10)
------------------
- Be defensive about having logging handlers configured to avoid throwing
NullHandler attribute errors
0.8.2 (2017-06-30)
------------------
- Don't log ss and sr annotations when in a client span context
- Add error binary annotation if an exception occurs
0.8.1 (2017-06-16)
------------------
- Fixed server send timing to more accurately reflect when server send
actually occurs.
- Replaced logging_start annotation with logging_end
0.8.0 (2017-06-01)
------------------
- Added 128-bit trace id support
- Added ability to explicitly specify host for a span
- Added exception handling if host can't be determined automatically
- SERVER_ADDR ('sa') binary annotations can be added to spans
- py36 support
0.7.1 (2017-05-01)
------------------
- Fixed a bug where `update_binary_annotations` would fail for a child
span in a trace that is not being sampled
0.7.0 (2017-03-06)
------------------
- Simplify `update_binary_annotations` for both root and non-root spans
0.6.0 (2017-02-03)
------------------
- Added support for forcing `zipkin_span` to report timestamp/duration.
Changes API of `zipkin_span`, but defaults back to existing behavior.
0.5.0 (2017-02-01)
------------------
- Properly set timestamp/duration on server and local spans
- Updated thrift spec to include these new fields
- The `zipkin_span` entrypoint should be backwards compatible
0.4.4 (2016-11-29)
------------------
- Add optional annotation for when Zipkin logging starts
0.4.3 (2016-11-04)
------------------
- Fix bug in zipkin_span decorator
0.4.2 (2016-11-01)
------------------
- Be defensive about transport_handler when logging spans.
0.4.1 (2016-10-24)
------------------
- Add ability to override span_id when creating new ZipkinAttrs.
0.4.0 (2016-10-20)
------------------
- Added `start` and `stop` functions as friendlier versions of the
__enter__ and __exit__ functions.
0.3.1 (2016-09-30)
------------------
- Adds new param to thrift.create_endpoint allowing creation of
thrift Endpoint objects on a proxy machine representing another
host.
0.2.1 (2016-09-30)
------------------
- Officially "release" v0.2.0. Accidentally pushed a v0.2.0 without
the proper version bump, so v0.2.1 is the new real version. Please
use this instead of v0.2.0.
0.2.0 (2016-09-30)
------------------
- Fix problem where if zipkin_attrs and sample_rate were passed, but
zipkin_attrs.is_sampled=True, new zipkin_attrs were being generated.
0.1.2 (2016-09-29)
------------------
- Fix sampling algorithm that always sampled for rates > 50%
0.1.1 (2016-07-05)
------------------
- First py_zipkin version with context manager/decorator functionality.
Platform: UNKNOWN
Classifier: Development Status :: 3 - Alpha
Classifier: Intended Audience :: Developers
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Provides: py_zipkin
Requires-Python: >=3.7
Description-Content-Type: text/markdown
Provides-Extra: protobuf
|