1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
/*
This is part of pyahocorasick Python module.
Implementation of pickling/unpickling routines for Automaton class
Author : Wojciech Muła, wojciech_mula@poczta.onet.pl
WWW : http://0x80.pl
License : BSD-3-Clause (see LICENSE)
*/
/*
Pickling (automaton___reduce__):
1. assign sequential numbers to nodes in order to replace
address with these numbers
(pickle_dump_replace_fail_with_id)
2. save in array all nodes data in the same order as numbers,
also replace fail and next links with numbers; collect on
a list all values (python objects) stored in a trie
(pickle_dump_save);
Before we start, all nodes of trie are visited and total
size of pickled data is calculated. If it is small enough
(less than given threshold), all data is saved in a single
byte array. Otherwise, data is saved in several byte arrays.
In either case, the format of byte array is the same:
* 8 first bytes is number of nodes stored in this
chunk of memory
* the number if followed by some raw data.
When there is just one byte array, it's size is fit to
needs. If data is split, then each array has exactly the
same size of bytes, but not all might be used (only the
last array is fit).
3. clean up
(pickle_dump_undo_replace or pickle_dump_revert_replace)
Unpickling (automaton_unpickle, called in Automaton constructor)
1. load all nodes from array
2. make number->node lookup table
3. replace numbers stored in fail and next pointers with
real pointers, reassign python objects as values
*/
#include <string.h>
#include "src/pickle/pickle_data.c"
typedef struct NodeID {
TrieNode* fail; ///< original fail value
Py_uintptr_t id; ///< id
} NodeID;
typedef struct DumpState {
Py_uintptr_t id; ///< next id
size_t total_size; ///< number of nodes
TrieNode* failed_on; ///< if fail while numerating, save node in order
/// to revert changes made in trie
} DumpState;
static size_t
get_pickled_size(TrieNode* node) {
ASSERT(node != NULL);
return PICKLE_TRIENODE_SIZE + node->n * sizeof(Pair);
}
// replace fail with pairs (fail, id)
static int
pickle_dump_replace_fail_with_id(TrieNode* node, const int depth, void* extra) {
NodeID* repl;
ASSERT(sizeof(NodeID*) <= sizeof(TrieNode*));
#define state ((DumpState*)extra)
repl = (NodeID*)memory_alloc(sizeof(NodeID));
if (LIKELY(repl != NULL)) {
state->id += 1;
state->total_size += get_pickled_size(node);
repl->id = state->id;
repl->fail = node->fail;
node->fail = (TrieNode*)repl;
return 1;
}
else {
// error, revert is needed!
state->failed_on = node;
return 0;
}
#undef state
}
// revert changes in trie (in case of error)
static int
pickle_dump_revert_replace(TrieNode* node, const int depth, void* extra) {
#define state ((DumpState*)extra)
if (state->failed_on != node) {
NodeID* repl = (NodeID*)(node->fail);
node->fail = repl->fail;
memory_free(repl);
return 1;
}
else
return 0;
#undef state
}
// revert changes in trie
static int
pickle_dump_undo_replace(TrieNode* node, const int depth, void* extra) {
#define state ((DumpState*)extra)
NodeID* repl = (NodeID*)(node->fail);
node->fail = repl->fail;
memory_free(repl);
return 1;
#undef state
}
static int
pickle_dump_save(TrieNode* node, const int depth, void* extra) {
#define self ((PickleData*)extra)
#define NODEID(object) ((NodeID*)((TrieNode*)object)->fail)
TrieNode* dump;
TrieNode* tmp;
Pair* arr;
unsigned i;
size_t size;
size = get_pickled_size(node);
if (UNLIKELY(self->top + size > self->size)) {
if (UNLIKELY(!pickle_data__add_next_buffer(self))) {
self->error = true;
return 0;
}
}
dump = (TrieNode*)(self->data + self->top);
// we do not save the last pointer in array
arr = (Pair*)(self->data + self->top + PICKLE_TRIENODE_SIZE);
// append the python object to the list
if (node->eow and self->values) {
if (PyList_Append(self->values, node->output.object) == -1) {
self->error = true;
return 0;
}
}
// save node data
if (self->values)
dump->output.integer = 0;
else
dump->output.integer = node->output.integer;
dump->n = node->n;
dump->eow = node->eow;
tmp = NODEID(node)->fail;
if (tmp)
dump->fail = (TrieNode*)(NODEID(tmp)->id);
else
dump->fail = NULL;
// save array of pointers
for (i=0; i < node->n; i++) {
TrieNode* child = trienode_get_ith_unsafe(node, i);
ASSERT(child);
arr[i].child = (TrieNode*)(NODEID(child)->id); // save the id of child node
arr[i].letter = trieletter_get_ith_unsafe(node, i);
}
self->top += size;
(*self->count) += 1;
return 1;
#undef NODEID
#undef self
}
static PyObject*
automaton___reduce__(PyObject* self, PyObject* args) {
#define automaton ((Automaton*)self)
#define MB ((size_t)(1024*1024))
const size_t array_size = 16*MB;
DumpState state;
PickleData data;
PyObject* tuple;
// 0. for an empty automaton do nothing
if (automaton->count == 0) {
// the class constructor feed with an empty argument build an empty automaton
return F(Py_BuildValue)("O()", Py_TYPE(self));
}
// 1. numerate nodes
state.id = 0;
state.failed_on = NULL;
state.total_size = 0;
trie_traverse(automaton->root, pickle_dump_replace_fail_with_id, &state);
if (state.failed_on) {
// revert changes (partial)
trie_traverse(automaton->root, pickle_dump_revert_replace, &state);
// and set error
PyErr_NoMemory();
return NULL;
}
// 2. gather data
if (!pickle_data__init(&data, automaton->store, state.total_size, array_size))
goto exception;
trie_traverse(automaton->root, pickle_dump_save, &data);
if (UNLIKELY(data.error)) {
goto exception;
}
if (UNLIKELY(!pickle_data__shrink_last_buffer(&data))) {
goto exception;
}
if (automaton->store != STORE_ANY) { // always pickle a Python object
data.values = Py_None;
Py_INCREF(data.values);
}
/* 3: save tuple:
* binary data
* automaton->kind
* automaton->store
* automaton->key_type
* automaton->count
* automaton->longest_word
* list of values
*/
tuple = F(Py_BuildValue)(
"O(OiiiiiO)",
Py_TYPE(self),
data.bytes_list,
automaton->kind,
automaton->store,
automaton->key_type,
automaton->count,
automaton->longest_word,
data.values
);
if (data.values == Py_None) {
data.values = NULL;
}
if (UNLIKELY(tuple == NULL)) {
goto exception;
}
// revert all changes
trie_traverse(automaton->root, pickle_dump_undo_replace, NULL);
return tuple;
exception:
// revert all changes
trie_traverse(automaton->root, pickle_dump_undo_replace, NULL);
// and free memory
pickle_data__cleanup(&data);
return NULL;
#undef automaton
}
static bool
automaton_unpickle__validate_bytes_list(PyObject* bytes_list, size_t* result) {
PyObject* bytes;
Py_ssize_t k;
Py_ssize_t nodes_count;
const uint8_t* data;
size_t count = 0;
// calculate the total number of nodes (and do validate data at the same time)
for (k=0; k < PyList_GET_SIZE(bytes_list); k++) {
bytes = PyList_GET_ITEM(bytes_list, k);
if (UNLIKELY(!F(PyBytes_CheckExact)(bytes))) {
PyErr_Format(PyExc_ValueError,
"Item #%d on the bytes list is not a bytes object",
k);
return false;
}
data = (const uint8_t*)PyBytes_AS_STRING(bytes);
nodes_count = *((Py_ssize_t*)data);
if (UNLIKELY(nodes_count <= 0)) {
PyErr_Format(PyExc_ValueError,
"Nodes count for item #%d on the bytes list is not positive (%d)",
k, nodes_count);
return false;
}
count += nodes_count;
}
*result = count;
return true;
}
static bool
automaton_unpickle(
Automaton* automaton,
PyObject* bytes_list,
PyObject* values
) {
TrieNode** id2node = NULL;
TrieNode* node;
TrieNode* dump;
Pair* next;
PyObject* bytes;
PyObject* value;
Py_ssize_t nodes_count;
Py_ssize_t i;
size_t id;
const uint8_t* data;
const uint8_t* ptr;
const uint8_t* end;
size_t k;
size_t j;
size_t object_idx = 0;
size_t index;
size_t count;
if (!automaton_unpickle__validate_bytes_list(bytes_list, &count)) {
goto exception;
}
id2node = (TrieNode**)memory_alloc((count+1) * sizeof(TrieNode*));
if (UNLIKELY(id2node == NULL)) {
goto no_mem;
}
// 1. make nodes
id = 1;
for (k=0; k < PyList_GET_SIZE(bytes_list); k++) {
bytes = PyList_GET_ITEM(bytes_list, k);
data = (const uint8_t*)PyBytes_AS_STRING(bytes);
nodes_count = *((Py_ssize_t*)data);
ptr = data + PICKLE_CHUNK_COUNTER_SIZE;
end = ptr + PyBytes_GET_SIZE(bytes) - PICKLE_CHUNK_COUNTER_SIZE;
for (i=0; i < nodes_count; i++) {
if (UNLIKELY(ptr + PICKLE_TRIENODE_SIZE > end)) {
PyErr_Format(PyExc_ValueError,
"Data truncated [parsing header of node #%d]: "
"chunk #%d @ offset %lu, expected at least %lu bytes",
i, k, ptr - data, PICKLE_TRIENODE_SIZE);
goto exception;
}
dump = (TrieNode*)(ptr);
node = (TrieNode*)memory_alloc(sizeof(TrieNode));
if (LIKELY(node != NULL)) {
node->output = dump->output;
node->fail = dump->fail;
node->n = dump->n;
node->eow = dump->eow;
node->next = NULL;
}
else
goto no_mem;
ptr += PICKLE_TRIENODE_SIZE;
id2node[id++] = node;
if (node->n > 0) {
if (UNLIKELY(ptr + node->n * sizeof(Pair) > end)) {
PyErr_Format(PyExc_ValueError,
"Data truncated [parsing children of node #%d]: "
"chunk #%d @ offset %lu, expected at least %ld bytes",
i, k, ptr - data + i, node->n * sizeof(Pair));
goto exception;
}
node->next = (Pair*)memory_alloc(node->n * sizeof(Pair));
if (UNLIKELY(node->next == NULL)) {
goto no_mem;
}
next = (Pair*)(ptr);
for (j=0; j < node->n; j++) {
node->next[j] = next[j];
}
ptr += node->n * sizeof(Pair);
}
}
}
// 2. restore pointers and references to pyobjects
for (i=1; i < id; i++) {
node = id2node[i];
// references
if (values and node->eow) {
value = F(PyList_GetItem)(values, object_idx);
if (value) {
Py_INCREF(value);
node->output.object = value;
object_idx += 1;
}
else
goto exception;
}
// pointers
if (node->fail) {
index = (size_t)(node->fail);
if (LIKELY(index < count + 1)) {
node->fail = id2node[index];
} else {
PyErr_Format(PyExc_ValueError,
"Node #%lu malformed: the fail link points to node #%lu, while there are %lu nodes",
i - 1, index, count);
goto exception;
}
}
for (j=0; j < node->n; j++) {
index = (size_t)(node->next[j].child);
if (LIKELY(index < count + 1)) {
node->next[j].child = id2node[index];
} else {
PyErr_Format(PyExc_ValueError,
"Node #%lu malformed: next link #%lu points to node #%lu, while there are %lu nodes",
i - 1, j, index, count);
goto exception;
}
}
}
automaton->root = id2node[1];
memory_free(id2node);
return 1;
no_mem:
PyErr_NoMemory();
exception:
// free memory
if (id2node) {
for (i=1; i < id; i++) {
trienode_free(id2node[i]);
}
memory_free(id2node);
}
// If there is value list and some of its items were already
// referenced, release them
if (values) {
for (i=0; i < object_idx; i++) {
Py_XDECREF(F(PyList_GetItem)(values, i));
}
}
return 0;
}
|