1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
# README.md (pyani)
[](https://pypi.python.org/pypi/pyani)
[](https://github.com/widdowquinn/pyani/blob/master/LICENSE)
[](https://travis-ci.org/widdowquinn/pyani/branches)
[](https://codecov.io/github/widdowquinn/pyani)
[](https://hub.docker.com/r/leightonpritchard/average_nucleotide_identity)
<!-- TOC -->
- [Overview](#overview)
- [Installation](#installation)
- [Docker images](#docker-images)
- [Testing `pyani`](#testing-pyani)
- [Running `pyani`](#running-pyani)
- [Script: <a name="average_nucleotide_identity.py">`average_nucleotide_identity.py`</a>](#script-a-nameaverage_nucleotide_identitypyaverage_nucleotide_identitypya)
- [Script: <a name="genbank_get_genomes_by_taxon.py">`genbank_get_genomes_by_taxon.py`</a>](#script-a-namegenbank_get_genomes_by_taxonpygenbank_get_genomes_by_taxonpya)
- [DEPENDENCIES](#dependencies)
- [For ANI analysis](#for-ani-analysis)
- [For graphical output](#for-graphical-output)
- [Method and Output Description](#method-and-output-description)
- [Average Nucleotide Identity (ANI)](#average-nucleotide-identity-ani)
- [Developer notes](#developer-notes)
- [Code Style and Pre-Commit Hooks](#code-style-and-pre-commit-hooks)
- [Licensing](#licensing)
<!-- /TOC -->
## Overview
`pyani` is a Python3 module that provides support for calculating average nucleotide identity (ANI) and related measures for whole genome comparisons, and rendering relevant graphical summary output. Where available, it takes advantage of multicore systems, and can integrate with [SGE/OGE](http://gridscheduler.sourceforge.net/)-type job schedulers for the sequence comparisons.
`pyani` installs the following scripts into the `$PATH`:
* `average_nucleotide_identity.py` that enables command-line ANI analysis.
* `genbank_get_genomes_by_taxon.py` that downloads publicly-available genomes from NCBI.
* `delta_filter_wrapper.py` is a helper script required to run delta-filter on SGE/OGE systems.
## Installation
The easiest way to install `pyani` is to use `pip3`:
```bash
pip3 install pyani
```
From version 0.1.3.2 onwards, this should also install all the required Python package dependencies. Prior to this version (i.e. 0.1.3.1 and earlier), you can acquire these dependencies with `pip -r`, and pointing at `requirements.txt` from this repository:
```bash
pip3 install -r requirements.txt
```
## Docker images
`pyani`'s scripts are also provided as [Docker](https://www.docker.com/) images, that can be run locally as containers. To use these images, first install Docker, then to run the corresponding scripts issue either:
```bash
docker run -v ${PWD}:/host_dir leightonpritchard/average_nucleotide_identity
```
or
```bash
docker run -v ${PWD}:/host_dir leightonpritchard/genbank_get_genomes_by_taxon
```
The `-v ${PWD}:/host_dir` argument enables the Docker container to see the current directory. Without this argument, the container will not be able to see your input files, or write output data.
## Testing `pyani`
`pyani` includes tests that can be run with `nosetest` (including coverage measurement using `coverage.py`) with the following command, executed from the repository root directory:
```bash
nosetests --cover-erase --cover-package=pyani --cover-html --with-coverage
```
Coverage output will be placed (by default) in the `cover` subdirectory, and can be loaded into the web browser.
## Running `pyani`
### Script: <a name="average_nucleotide_identity.py">`average_nucleotide_identity.py`</a>
The `average_nucleotide_identity.py` script - installed as part of this package - enables straightforward ANI analysis at the command-line, and uses the `pyani` module behind the scenes.
You can get a summary of available command-line options with `average_nucleotide_identity.py -h`
```bash
$ average_nucleotide_identity.py -h
usage: average_nucleotide_identity.py [-h] [-o OUTDIRNAME] [-i INDIRNAME] [-v]
[-f] [-s FRAGSIZE] [-l LOGFILE]
[--skip_nucmer] [--skip_blastn]
[--noclobber] [--nocompress] [-g]
[--gformat GFORMAT] [--gmethod GMETHOD]
[--labels LABELS] [--classes CLASSES]
[-m METHOD] [--scheduler SCHEDULER]
[--workers WORKERS]
[--SGEgroupsize SGEGROUPSIZE]
[--maxmatch] [--nucmer_exe NUCMER_EXE]
[--blastn_exe BLASTN_EXE]
[--makeblastdb_exe MAKEBLASTDB_EXE]
[--blastall_exe BLASTALL_EXE]
[--formatdb_exe FORMATDB_EXE]
[--write_excel] [--subsample SUBSAMPLE]
[--seed SEED] [--jobprefix JOBPREFIX]
[…]
```
Example data and output can be found in the directory `test_ani_data`. The data are chromosomes of four isolates of *Caulobacter*. Basic analyses can be performed with the command lines:
```bash
$ average_nucleotide_identity.py -i tests/test_ani_data/ -o tests/test_ANIm_output -m ANIm -g
$ average_nucleotide_identity.py -i tests/test_ani_data/ -o tests/test_ANIb_output -m ANIb -g
$ average_nucleotide_identity.py -i tests/test_ani_data/ -o tests/test_ANIblastall_output -m ANIblastall -g
$ average_nucleotide_identity.py -i tests/test_ani_data/ -o tests/test_TETRA_output -m TETRA -g
```
The graphical output below, supporting assignment of `NC_002696` and `NC_011916` to the same species (*C.crescentus*), and the other two isolates to distinct species (`NC_014100`:*C.segnis*; `NC_010338`:*C.* sp K31), was generated with the command-line:
```bash
average_nucleotide_identity.py -v -i tests/test_ani_data/ \
-o tests/test_ANIm_output/ -g --gformat png,pdf,eps \
--classes tests/test_ani_data/classes.tab \
--labels tests/test_ani_data/labels.tab
```




### Script: <a name="genbank_get_genomes_by_taxon.py">`genbank_get_genomes_by_taxon.py`</a>
The script `genbank_get_genomes_by_taxon.py`, installed by this package, enables download of genomes from NCBI, specified by taxon ID. The script will download all available assemblies for taxa at or below the specified node in the NCBI taxonomy tree.
Command-line options can be viewed using:
```bash
$ genbank_get_genomes_by_taxon.py -h
usage: genbacnk_get_genomes_by_taxon.py [-h] [-o OUTDIRNAME] [-t TAXON] [-v]
[-f] [--noclobber] [-l LOGFILE]
[--format FORMAT] [--email EMAIL]
[--retries RETRIES]
[--batchsize BATCHSIZE]
[…]
```
For example, the NCBI taxonomy ID for *Caulobacter* is 75, so all publicly-available *Caulobacter* sequences can be obtained using the command-line:
```bash
$ genbank_get_genomes_by_taxon.py -o Caulobacter_downloads -v -t 75 -l Caulobacter_downloads.log --email me@my.email.domain
INFO: genbank_get_genomes_by_taxon.py: Mon Apr 18 17:22:54 2016
INFO: command-line: /Users/lpritc/Virtualenvs/pyani3/bin/genbank_get_genomes_by_taxon.py -o Caulobacter_downloads -v -t 75 -l Caulobacter_downloads.log --email me@my.email.domain
INFO: Namespace(batchsize=10000, email='me@my.email.domain', force=False, format='gbk,fasta', logfile='Caulobacter_downloads.log', noclobber=False, outdirname='Caulobacter_downloads', retries=20, taxon='75', verbose=True)
INFO: Set NCBI contact email to me@my.email.domain
INFO: Creating directory Caulobacter_downloads
INFO: Output directory: Caulobacter_downloads
INFO: Passed taxon IDs: 75
INFO: Entrez ESearch with query: txid75[Organism:exp]
INFO: Entrez ESearch returns 29 assembly IDs
INFO: Identified 29 unique assemblies
INFO: Taxon 75: 29 assemblies
[…]
INFO: Assembly 639581: 271 contigs
INFO: Assembly 233261: 17 contigs
INFO: Assembly 575291: 48 contigs
INFO: Mon Apr 18 17:25:46 2016
INFO: Done.
```
**NOTE:** You must provide a valid email to identify yourself to NCBI for troubleshooting.
The number of attempted retries for each download, and the size of a batch download can be modified. By default, the script will attempt 20 download retries, and obtain sequences in batches of 10000.
## DEPENDENCIES
Note that Python package dependencies should automatically be installed if you are using version 0.1.3.2 or greater, and installing with `pip install pyani`.
For earlier versions, you can satisfy dependencies by using `pip install -r requirements.txt` (using the `requirements.txt` file in this repository).
### For ANI analysis
* **Biopython** <http://www.biopython.org>
* **NumPy** <http://www.numpy.org/>
* **pandas** <http://pandas.pydata.org/>
* **SciPy** <http://www.scipy.org/>
#### Alignment tools
* **BLAST+** executable in the `$PATH`, or available on the command line (required for **ANIb** analysis) <ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/>
* **legacy BLAST** executable in the `$PATH` or available on the command line (required for **ANIblastall** analysis) <ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST/>
* **MUMmer** executables in the $PATH, or available on the command line (required for **ANIm** analysis) <http://mummer.sourceforge.net/>
### For graphical output
* **matplotlib** <http://matplotlib.org/>
* **seaborn** <https://github.com/mwaskom/seaborn>
## Method and Output Description
### Average Nucleotide Identity (ANI)
This module calculates Average Nucleotide Identity (ANI) according to one of a number of alternative methods described in, e.g.
* Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106: 19126-19131. doi:10.1073/pnas.0906412106. (ANI1020, ANIm, ANIb)
* Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, et al. (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Micr 57: 81-91. doi:10.1099/ijs.0.64483-0.
ANI is proposed to be the appropriate *in silico* substitute for DNA-DNA
hybridisation (DDH), and so useful for delineating species boundaries. A
typical percentage threshold for species boundary in the literature is 95%
ANI (e.g. Richter et al. 2009).
All ANI methods follow the basic algorithm:
- Align the genome of organism 1 against that of organism 2, and identify the matching regions
- Calculate the percentage nucleotide identity of the matching regions, as an average for all matching regions
Methods differ on: (1) what alignment algorithm is used, and the choice of parameters (this affects the aligned region boundaries); (2) what the input is for alignment (typically either fragments of fixed size, or the most complete assembly available).
* **ANIm**: uses MUMmer (NUCmer) to align the input sequences.
* **ANIb**: uses BLASTN+ to align 1020nt fragments of the input sequences
* **ANIblastall**: uses legacy BLASTN to align 1020nt fragments of the input sequences
* **TETRA**: calculates tetranucleotide frequencies of each input sequence
The algorithms takes as input correctly-formatted FASTA multiple sequence files. All sequences for a single organism should be contained in only one sequence file. Although it is possible to provide new labels for each input genome, for rendering graphical output, the names of these files are used for identification so it is best to name
them sensibly.
Output is written to a named directory. The output files differ depending on the chosen ANI method.
* **ANIm**: MUMmer/NUCmer .delta files, describing each pairwise sequence alignment. Output as tab-separated plain text format tables describing: alignment coverage; total alignment lengths; similarity errors; and percentage identity (ANIm).
* **ANIb** and **ANIblastall**: FASTA sequences describing 1020nt fragments of each input sequence; BLAST nucleotide databases - one for each set of fragments; and BLASTN output files (tab-separated tabular format plain text) - one for each pairwise comparison of input sequences. Output as tab-separated plain text tables describing: alignment coverage; total alignment lengths; similarity errors; and percentage identity (ANIb or ANIblastall).
* **TETRA**: Tab-separated plain text files describing the Pearson correlations between Z-score distributions for each tetranucleotide in each input sequence (TETRA).
If graphical output is chosen, the output directory will also contain PDF, PNG and EPS files representing the various output measures as a heatmap with row and column dendrograms. Other output formats (e.g. SVG) can be specified with the `--gformat` argument.
## Developer notes
The `pyani` package is presented at [`GitHub`](https://github.com/widdowquinn/pyani) under two main branches:
- `master` is the source code underpinning the most recent/current release of `pyani`. It will (almost) always be in sync with the latest release found at [https://github.com/widdowquinn/pyani/releases](https://github.com/widdowquinn/pyani/releases). The only time this code should not be in sync with the release is when there are modifications to documentation, or immediately preceding a release.
- `development` is the current bleeding-edge version of `pyani`. It should (almost) always be in a working and usable condition, but may not be complete and/or some features may be missing or still under development.
### Code Style and Pre-Commit Hooks
The source code for `pyani` is expected to conform to `flake8` linting, and `black` code styling. These are enforced as pre-commit hooks using the `pre-commit` package (included in `requirements.txt`).
The `black` and `flake8` hooks are defined in `.pre-commit-config.yaml`. Custom settings for `flake8` are held in `.flake8`.
To enable pre-commit checks in the codebase on your local machine, execute the following command in the root directory of this repository:
```bash
pre-commit install
```
## Licensing
Unless otherwise indicated, all code is subject to the following agreement:
(c) The James Hutton Institute 2014-2019
Author: Leighton Pritchard
Contact: leighton.pritchard@hutton.ac.uk
Address:
Leighton Pritchard,
Information and Computational Sciences,
James Hutton Institute,
Errol Road,
Invergowrie,
Dundee,
DD6 9LH,
Scotland,
UK
The MIT License
Copyright (c) 2014-2019 The James Hutton Institute
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
|