File: README.md

package info (click to toggle)
python-pyani 0.2.10-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 159,800 kB
  • sloc: python: 3,111; makefile: 86; sh: 30
file content (298 lines) | stat: -rw-r--r-- 16,557 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# README.md (pyani)

[![pyani PyPi version](https://img.shields.io/pypi/v/pyani.svg "PyPi version")](https://pypi.python.org/pypi/pyani)
[![pyani licence](https://img.shields.io/pypi/l/pyani.svg "PyPi licence")](https://github.com/widdowquinn/pyani/blob/master/LICENSE)
[![pyani TravisCI build status](https://api.travis-ci.org/widdowquinn/pyani.svg?branch=master)](https://travis-ci.org/widdowquinn/pyani/branches)
[![pyani codecov.io coverage](https://img.shields.io/codecov/c/github/widdowquinn/pyani/master.svg)](https://codecov.io/github/widdowquinn/pyani)
[![pyani Docker Pulls](https://img.shields.io/docker/pulls/leightonpritchard/average_nucleotide_identity.svg)](https://hub.docker.com/r/leightonpritchard/average_nucleotide_identity)

<!-- TOC -->

- [Overview](#overview)
- [Installation](#installation)
- [Docker images](#docker-images)
- [Testing `pyani`](#testing-pyani)
- [Running `pyani`](#running-pyani)
    - [Script: <a name="average_nucleotide_identity.py">`average_nucleotide_identity.py`</a>](#script-a-nameaverage_nucleotide_identitypyaverage_nucleotide_identitypya)
    - [Script: <a name="genbank_get_genomes_by_taxon.py">`genbank_get_genomes_by_taxon.py`</a>](#script-a-namegenbank_get_genomes_by_taxonpygenbank_get_genomes_by_taxonpya)
- [DEPENDENCIES](#dependencies)
    - [For ANI analysis](#for-ani-analysis)
    - [For graphical output](#for-graphical-output)
- [Method and Output Description](#method-and-output-description)
    - [Average Nucleotide Identity (ANI)](#average-nucleotide-identity-ani)
- [Developer notes](#developer-notes)
    - [Code Style and Pre-Commit Hooks](#code-style-and-pre-commit-hooks)
- [Licensing](#licensing)

<!-- /TOC -->

## Overview
`pyani` is a Python3 module that provides support for calculating average nucleotide identity (ANI) and related measures for whole genome comparisons, and rendering relevant graphical summary output. Where available, it takes advantage of multicore systems, and can integrate with [SGE/OGE](http://gridscheduler.sourceforge.net/)-type job schedulers for the sequence comparisons.

`pyani` installs the following scripts into the `$PATH`:

* `average_nucleotide_identity.py` that enables command-line ANI analysis.
* `genbank_get_genomes_by_taxon.py` that downloads publicly-available genomes from NCBI.
* `delta_filter_wrapper.py` is a helper script required to run delta-filter on SGE/OGE systems.

## Installation

The easiest way to install `pyani` is to use `pip3`:

```bash
pip3 install pyani
```

From version 0.1.3.2 onwards, this should also install all the required Python package dependencies. Prior to this version (i.e. 0.1.3.1 and earlier), you can acquire these dependencies with `pip -r`, and pointing at `requirements.txt` from this repository:

```bash
pip3 install -r requirements.txt
```

## Docker images

`pyani`'s scripts are also provided as [Docker](https://www.docker.com/) images, that can be run locally as containers. To use these images, first install Docker, then to run the corresponding scripts issue either:

```bash
docker run -v ${PWD}:/host_dir leightonpritchard/average_nucleotide_identity
```

or

```bash
docker run -v ${PWD}:/host_dir leightonpritchard/genbank_get_genomes_by_taxon
```

The `-v ${PWD}:/host_dir` argument enables the Docker container to see the current directory. Without this argument, the container will not be able to see your input files, or write output data.


## Testing `pyani`

`pyani` includes tests that can be run with `nosetest` (including coverage measurement using `coverage.py`) with the following command, executed from the repository root directory:

```bash
nosetests --cover-erase --cover-package=pyani --cover-html --with-coverage
```

Coverage output will be placed (by default) in the `cover` subdirectory, and can be loaded into the web browser.

## Running `pyani`

### Script: <a name="average_nucleotide_identity.py">`average_nucleotide_identity.py`</a>

The `average_nucleotide_identity.py` script - installed as part of this package - enables straightforward ANI analysis at the command-line, and uses the `pyani` module behind the scenes.

You can get a summary of available command-line options with `average_nucleotide_identity.py -h`

```bash
$ average_nucleotide_identity.py -h
usage: average_nucleotide_identity.py [-h] [-o OUTDIRNAME] [-i INDIRNAME] [-v]
                                      [-f] [-s FRAGSIZE] [-l LOGFILE]
                                      [--skip_nucmer] [--skip_blastn]
                                      [--noclobber] [--nocompress] [-g]
                                      [--gformat GFORMAT] [--gmethod GMETHOD]
                                      [--labels LABELS] [--classes CLASSES]
                                      [-m METHOD] [--scheduler SCHEDULER]
                                      [--workers WORKERS]
                                      [--SGEgroupsize SGEGROUPSIZE]
                                      [--maxmatch] [--nucmer_exe NUCMER_EXE]
                                      [--blastn_exe BLASTN_EXE]
                                      [--makeblastdb_exe MAKEBLASTDB_EXE]
                                      [--blastall_exe BLASTALL_EXE]
                                      [--formatdb_exe FORMATDB_EXE]
                                      [--write_excel] [--subsample SUBSAMPLE]
                                      [--seed SEED] [--jobprefix JOBPREFIX]


[…]
```

Example data and output can be found in the directory `test_ani_data`. The data are chromosomes of four isolates of *Caulobacter*. Basic analyses can be performed with the command lines:

```bash
$ average_nucleotide_identity.py -i tests/test_ani_data/ -o tests/test_ANIm_output -m ANIm -g
$ average_nucleotide_identity.py -i tests/test_ani_data/ -o tests/test_ANIb_output -m ANIb -g
$ average_nucleotide_identity.py -i tests/test_ani_data/ -o tests/test_ANIblastall_output -m ANIblastall -g
$ average_nucleotide_identity.py -i tests/test_ani_data/ -o tests/test_TETRA_output -m TETRA -g
```

The graphical output below, supporting assignment of `NC_002696` and `NC_011916` to the same species (*C.crescentus*), and the other two isolates to distinct species (`NC_014100`:*C.segnis*; `NC_010338`:*C.* sp K31), was generated with the command-line:

```bash
average_nucleotide_identity.py -v -i tests/test_ani_data/ \
    -o tests/test_ANIm_output/ -g --gformat png,pdf,eps \
    --classes tests/test_ani_data/classes.tab \
    --labels tests/test_ani_data/labels.tab
```


![ANIm percentage identity for *Caulobacter* test data](tests/test_ani_data/ANIm_percentage_identity.png "ANIm percentage identity")
![ANIm alignment coverage for *Caulobacter* test data](tests/test_ani_data/ANIm_alignment_coverage.png "ANIm alignment coverage")
![ANIm alignment length for *Caulobacter* test data](tests/test_ani_data/ANIm_alignment_lengths.png "ANIm alignment length")
![ANIm alignment similarity errors for *Caulobacter* test data](tests/test_ani_data/ANIm_similarity_errors.png "ANIm alignment similarity")

### Script: <a name="genbank_get_genomes_by_taxon.py">`genbank_get_genomes_by_taxon.py`</a>

The script `genbank_get_genomes_by_taxon.py`, installed by this package, enables download of genomes from NCBI, specified by taxon ID. The script will download all available assemblies for taxa at or below the specified node in the NCBI taxonomy tree.

Command-line options can be viewed using:

```bash
$ genbank_get_genomes_by_taxon.py -h
usage: genbacnk_get_genomes_by_taxon.py [-h] [-o OUTDIRNAME] [-t TAXON] [-v]
                                        [-f] [--noclobber] [-l LOGFILE]
                                        [--format FORMAT] [--email EMAIL]
                                        [--retries RETRIES]
                                        [--batchsize BATCHSIZE]
[…]
```

For example, the NCBI taxonomy ID for *Caulobacter* is 75, so all publicly-available *Caulobacter* sequences can be obtained using the command-line:

```bash
$ genbank_get_genomes_by_taxon.py -o Caulobacter_downloads -v -t 75 -l Caulobacter_downloads.log --email me@my.email.domain
INFO: genbank_get_genomes_by_taxon.py: Mon Apr 18 17:22:54 2016
INFO: command-line: /Users/lpritc/Virtualenvs/pyani3/bin/genbank_get_genomes_by_taxon.py -o Caulobacter_downloads -v -t 75 -l Caulobacter_downloads.log --email me@my.email.domain
INFO: Namespace(batchsize=10000, email='me@my.email.domain', force=False, format='gbk,fasta', logfile='Caulobacter_downloads.log', noclobber=False, outdirname='Caulobacter_downloads', retries=20, taxon='75', verbose=True)
INFO: Set NCBI contact email to me@my.email.domain
INFO: Creating directory Caulobacter_downloads
INFO: Output directory: Caulobacter_downloads
INFO: Passed taxon IDs: 75
INFO: Entrez ESearch with query: txid75[Organism:exp]
INFO: Entrez ESearch returns 29 assembly IDs
INFO: Identified 29 unique assemblies
INFO: Taxon 75: 29 assemblies
[…]
INFO: Assembly 639581: 271 contigs
INFO: Assembly 233261: 17 contigs
INFO: Assembly 575291: 48 contigs
INFO: Mon Apr 18 17:25:46 2016
INFO: Done.
```

**NOTE:** You must provide a valid email to identify yourself to NCBI for troubleshooting.

The number of attempted retries for each download, and the size of a batch download can be modified. By default, the script will attempt 20 download retries, and obtain sequences in batches of 10000.


## DEPENDENCIES

Note that Python package dependencies should automatically be installed if you are using version 0.1.3.2 or greater, and installing with `pip install pyani`.

For earlier versions, you can satisfy dependencies by using `pip install -r requirements.txt` (using the `requirements.txt` file in this repository).

### For ANI analysis

* **Biopython** <http://www.biopython.org>
* **NumPy** <http://www.numpy.org/>
* **pandas** <http://pandas.pydata.org/>
* **SciPy** <http://www.scipy.org/>

#### Alignment tools

* **BLAST+** executable in the `$PATH`, or available on the command line (required for **ANIb** analysis) <ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/>
* **legacy BLAST** executable in the `$PATH` or available on the command line (required for **ANIblastall** analysis) <ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST/>
* **MUMmer** executables in the $PATH, or available on the command line (required for **ANIm** analysis) <http://mummer.sourceforge.net/>

### For graphical output

* **matplotlib** <http://matplotlib.org/>
* **seaborn** <https://github.com/mwaskom/seaborn>

## Method and Output Description

### Average Nucleotide Identity (ANI)

This module calculates Average Nucleotide Identity (ANI) according to one of a number of alternative methods described in, e.g.

* Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106: 19126-19131. doi:10.1073/pnas.0906412106. (ANI1020, ANIm, ANIb)
* Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, et al. (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Micr 57: 81-91. doi:10.1099/ijs.0.64483-0.

ANI is proposed to be the appropriate *in silico* substitute for DNA-DNA 
hybridisation (DDH), and so useful for delineating species boundaries. A 
typical percentage threshold for species boundary in the literature is 95% 
ANI (e.g. Richter et al. 2009).

All ANI methods follow the basic algorithm:

- Align the genome of organism 1 against that of organism 2, and identify the matching regions
- Calculate the percentage nucleotide identity of the matching regions, as an average for all matching regions

Methods differ on: (1) what alignment algorithm is used, and the choice of parameters (this affects the aligned region boundaries); (2) what the input is for alignment (typically either fragments of fixed size, or the most complete assembly available).

* **ANIm**: uses MUMmer (NUCmer) to align the input sequences.
* **ANIb**: uses BLASTN+ to align 1020nt fragments of the input sequences
* **ANIblastall**: uses legacy BLASTN to align 1020nt fragments of the input sequences
* **TETRA**: calculates tetranucleotide frequencies of each input sequence

The algorithms takes as input correctly-formatted FASTA multiple sequence files. All sequences for a single organism should be contained in only one sequence file. Although it is possible to provide new labels for each input genome, for rendering graphical output, the names of these files are used for identification so it is best to name 
them sensibly.

Output is written to a named directory. The output files differ depending on the chosen ANI method.

* **ANIm**: MUMmer/NUCmer .delta files, describing each pairwise sequence alignment. Output as tab-separated plain text format tables describing: alignment coverage; total alignment lengths; similarity errors; and percentage identity (ANIm).
* **ANIb** and **ANIblastall**: FASTA sequences describing 1020nt fragments of each input sequence; BLAST nucleotide databases - one for each set of fragments; and BLASTN output files (tab-separated tabular format plain text) - one for each pairwise comparison of input sequences. Output as tab-separated plain text tables describing: alignment coverage; total alignment lengths; similarity errors; and percentage identity (ANIb or ANIblastall).
* **TETRA**: Tab-separated plain text files describing the Pearson correlations between Z-score distributions for each tetranucleotide in each input sequence (TETRA).

If graphical output is chosen, the output directory will also contain PDF, PNG and EPS files representing the various output measures as a heatmap with row and column dendrograms. Other output formats (e.g. SVG) can be specified with the `--gformat` argument.

## Developer notes

The `pyani` package is presented at [`GitHub`](https://github.com/widdowquinn/pyani) under two main branches:

- `master` is the source code underpinning the most recent/current release of `pyani`. It will (almost) always be in sync with the latest release found at [https://github.com/widdowquinn/pyani/releases](https://github.com/widdowquinn/pyani/releases). The only time this code should not be in sync with the release is when there are modifications to documentation, or immediately preceding a release.
- `development` is the current bleeding-edge version of `pyani`. It should (almost) always be in a working and usable condition, but may not be complete and/or some features may be missing or still under development.

### Code Style and Pre-Commit Hooks

The source code for `pyani` is expected to conform to `flake8` linting, and `black` code styling. These are enforced as pre-commit hooks using the `pre-commit` package (included in `requirements.txt`).

The `black` and `flake8` hooks are defined in `.pre-commit-config.yaml`. Custom settings for `flake8` are held in `.flake8`.

To enable pre-commit checks in the codebase on your local machine, execute the following command in the root directory of this repository:

```bash
pre-commit install
```

## Licensing

Unless otherwise indicated, all code is subject to the following agreement:

    (c) The James Hutton Institute 2014-2019
    Author: Leighton Pritchard

    Contact: leighton.pritchard@hutton.ac.uk

    Address: 
    Leighton Pritchard,
    Information and Computational Sciences,
    James Hutton Institute,
    Errol Road,
    Invergowrie,
    Dundee,
    DD6 9LH,
    Scotland,
    UK

The MIT License

Copyright (c) 2014-2019 The James Hutton Institute

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.