1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
# -*- coding: utf-8 -*-
# (c) The James Hutton Institute 2013-2019
# (c) University of Strathclyde 2019-2020
# Author: Leighton Pritchard
#
# Contact: leighton.pritchard@strath.ac.uk
#
# Leighton Pritchard,
# Strathclyde Institute for Pharmacy and Biomedical Sciences,
# Cathedral Street,
# Glasgow,
# G4 0RE
# Scotland,
# UK
#
# The MIT License
#
# Copyright (c) 2013-2019 The James Hutton Institute
# Copyright (c) 2019-2020 University of Strathclyde
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Module to implement graphics output for ANI analyses."""
# Force matplotlib NOT to use an Xwindows backend on *nix, so that
# _tkinter.TclError is avoided when there is no $DISPLAY env: this can occur
# when running the package/script via ssh
# See http://stackoverflow.com/questions/2801882/\
# generating-a-png-with-matplotlib-when-display-is-undefined
# This needs to be done before importing pyplot
from math import floor, log10
import warnings
import matplotlib
# Specify matplotlib backend
matplotlib.use("Agg")
import matplotlib.pyplot as plt # noqa: E402
import matplotlib.gridspec as gridspec # noqa: E402
import numpy as np # noqa: E402
import scipy.cluster.hierarchy as sch # noqa: E402
import scipy.spatial.distance as distance # noqa: E402
import seaborn as sns # noqa: E402
import pandas as pd # noqa: E402
from . import pyani_config # noqa: E402
# Register Matplotlib colourmaps
plt.colormaps.register(cmap=pyani_config.CMAP_SPBND_BURD)
plt.colormaps.register(cmap=pyani_config.CMAP_HADAMARD_BURD)
plt.colormaps.register(cmap=pyani_config.CMAP_BURD)
# Convenience class to hold heatmap graphics parameters
class Params(object): # pylint: disable=too-few-public-methods
"""Convenience class to hold heatmap rendering parameters."""
def __init__(self, params, labels=None, classes=None):
"""Instantiate Params object."""
self.cmap = plt.get_cmap(params[0])
self.vmin = params[1]
self.vmax = params[2]
self.labels = labels
self.classes = classes
@property
def vdiff(self):
"""Returns difference between max and min values for presentation."""
return max(0.01, self.vmax - self.vmin)
# helper for cleaning up matplotlib axes by removing ticks etc.
def clean_axis(axis):
"""Remove ticks, tick labels, and frame from axis."""
axis.get_xaxis().set_ticks([])
axis.get_yaxis().set_ticks([])
for spine in list(axis.spines.values()):
spine.set_visible(False)
# Add classes colorbar to Seaborn plot
def get_seaborn_colorbar(dfr, classes):
"""Return a colorbar representing classes, for a Seaborn plot.
The aim is to get a pd.Series for the passed dataframe columns,
in the form:
0 colour for class in col 0
1 colour for class in col 1
... colour for class in col ...
n colour for class in col n
"""
levels = sorted(list(set(classes.values())))
paldict = {
lvl: pal
for (lvl, pal) in zip(
levels,
sns.cubehelix_palette(len(levels), light=0.9, dark=0.1, reverse=True, start=1, rot=-2),
)
}
lvl_pal = {cls: paldict[lvl] for (cls, lvl) in list(classes.items())}
col_cb = pd.Series(dfr.index).map(lvl_pal)
# The col_cb Series index now has to match the dfr.index, but
# we don't create the Series with this (and if we try, it
# fails) - so change it with this line
col_cb.index = dfr.index
return col_cb
# Get safe Seaborn labels
def get_safe_seaborn_labels(dfr, labels):
"""Returns labels guaranteed to correspond to the dataframe."""
if labels is not None:
return [labels.get(str(i), str(i)) for i in dfr.index]
return [str(i) for i in dfr.index]
# Return a clustermap
def get_seaborn_clustermap(dfr, params, title=None, annot=True):
"""Returns a Seaborn clustermap."""
fig = sns.clustermap(
dfr,
cmap=params.cmap,
vmin=params.vmin,
vmax=params.vmax,
col_colors=params.colorbar,
row_colors=params.colorbar,
figsize=(params.figsize, params.figsize),
linewidths=params.linewidths,
xticklabels=params.labels,
yticklabels=params.labels,
annot=annot,
)
fig.cax.yaxis.set_label_position("left")
if title:
fig.cax.set_ylabel(title)
# Rotate ticklabels
fig.ax_heatmap.set_xticklabels(fig.ax_heatmap.get_xticklabels(), rotation=90)
fig.ax_heatmap.set_yticklabels(fig.ax_heatmap.get_yticklabels(), rotation=0)
# Return clustermap
return fig
# Generate Seaborn heatmap output
def heatmap_seaborn(dfr, outfilename=None, title=None, params=None):
"""Returns seaborn heatmap with cluster dendrograms.
- dfr - pandas DataFrame with relevant data
- outfilename - path to output file (indicates output format)
"""
# Decide on figure layout size: a minimum size is required for
# aesthetics, and a maximum to avoid core dumps on rendering.
# If we hit the maximum size, we should modify font size.
maxfigsize = 120
calcfigsize = dfr.shape[0] * 1.1
figsize = min(max(8, calcfigsize), maxfigsize)
if figsize == maxfigsize:
scale = maxfigsize / calcfigsize
sns.set_context("notebook", font_scale=scale)
# Add a colorbar?
if params.classes is None:
col_cb = None
else:
col_cb = get_seaborn_colorbar(dfr, params.classes)
# Labels are defined before we build the clustering
# If a label mapping is missing, use the key text as fall back
params.labels = get_safe_seaborn_labels(dfr, params.labels)
# Add attributes to parameter object, and draw heatmap
params.colorbar = col_cb
params.figsize = figsize
params.linewidths = 0.25
fig = get_seaborn_clustermap(dfr, params, title=title)
# Save to file
if outfilename:
fig.savefig(outfilename)
# Return clustermap
return fig
# Add dendrogram and axes to passed figure
def add_mpl_dendrogram(dfr, fig, heatmap_gs, orientation="col"):
"""Return a dendrogram and corresponding gridspec, attached to the fig.
Modifies the fig in-place. Orientation is either 'row' or 'col' and
determines location and orientation of the rendered dendrogram.
"""
# Row or column axes?
if orientation == "row":
dists = distance.squareform(distance.pdist(dfr))
spec = heatmap_gs[1, 0]
orient = "left"
nrows, ncols = 1, 2
height_ratios = [1]
else: # Column dendrogram
dists = distance.squareform(distance.pdist(dfr.T))
spec = heatmap_gs[0, 1]
orient = "top"
nrows, ncols = 2, 1
height_ratios = [1, 0.15]
# Create row dendrogram axis
gspec = gridspec.GridSpecFromSubplotSpec(
nrows,
ncols,
subplot_spec=spec,
wspace=0.0,
hspace=0.1,
height_ratios=height_ratios,
)
dend_axes = fig.add_subplot(gspec[0, 0])
dend = sch.dendrogram(
sch.linkage(distance.squareform(dists), method="complete"),
color_threshold=np.inf,
orientation=orient,
)
clean_axis(dend_axes)
return {"dendrogram": dend, "gridspec": gspec}
# Create heatmap axes for Matplotlib output
def get_mpl_heatmap_axes(dfr, fig, heatmap_gs):
"""Return axis for Matplotlib heatmap."""
# Create heatmap axis
heatmap_axes = fig.add_subplot(heatmap_gs[1, 1])
heatmap_axes.set_xticks(np.linspace(0, dfr.shape[0] - 1, dfr.shape[0]))
heatmap_axes.set_yticks(np.linspace(0, dfr.shape[0] - 1, dfr.shape[0]))
heatmap_axes.grid(False)
heatmap_axes.xaxis.tick_bottom()
heatmap_axes.yaxis.tick_right()
return heatmap_axes
def add_mpl_colorbar(dfr, fig, dend, params, orientation="row"):
"""Add class colorbars to Matplotlib heatmap."""
for name in dfr.index[dend["dendrogram"]["leaves"]]:
if name not in params.classes:
params.classes[name] = name
# Assign a numerical value to each class, for mpl
classdict = {cls: idx for (idx, cls) in enumerate(params.classes.values())}
# colourbar
cblist = []
for name in dfr.index[dend["dendrogram"]["leaves"]]:
try:
cblist.append(classdict[params.classes[name]])
except KeyError:
cblist.append(classdict[name])
colbar = pd.Series(cblist)
# Create colourbar axis - could capture if needed
if orientation == "row":
cbaxes = fig.add_subplot(dend["gridspec"][0, 1])
cbaxes.imshow(
[[cbar] for cbar in colbar.values],
cmap=plt.get_cmap(pyani_config.MPL_CBAR),
interpolation="nearest",
aspect="auto",
origin="lower",
)
else:
cbaxes = fig.add_subplot(dend["gridspec"][1, 0])
cbaxes.imshow(
[colbar],
cmap=plt.get_cmap(pyani_config.MPL_CBAR),
interpolation="nearest",
aspect="auto",
origin="lower",
)
clean_axis(cbaxes)
return colbar
# Add labels to the heatmap axes
def add_mpl_labels(heatmap_axes, rowlabels, collabels, params):
"""Add labels to Matplotlib heatmap axes, in-place."""
if params.labels:
# If a label mapping is missing, use the key text as fall back
rowlabels = [params.labels.get(lab, lab) for lab in rowlabels]
collabels = [params.labels.get(lab, lab) for lab in collabels]
xlabs = heatmap_axes.set_xticklabels(collabels)
ylabs = heatmap_axes.set_yticklabels(rowlabels)
for label in xlabs: # Rotate column labels
label.set_rotation(90)
for labset in (xlabs, ylabs): # Smaller font
for label in labset:
label.set_fontsize(8)
# Add colour scale to heatmap
def add_mpl_colorscale(fig, heatmap_gs, ax_map, params, title=None):
"""Add colour scale to heatmap."""
# Set tick intervals
cbticks = [params.vmin + e * params.vdiff for e in (0, 0.25, 0.5, 0.75, 1)]
if params.vmax > 10:
exponent = int(floor(log10(params.vmax))) - 1
cbticks = [int(round(e, -exponent)) for e in cbticks]
scale_subplot = gridspec.GridSpecFromSubplotSpec(1, 3, subplot_spec=heatmap_gs[0, 0], wspace=0.0, hspace=0.0)
scale_ax = fig.add_subplot(scale_subplot[0, 1])
cbar = fig.colorbar(ax_map, scale_ax, ticks=cbticks)
if title:
cbar.set_label(title, fontsize=6)
cbar.ax.yaxis.set_ticks_position("left")
cbar.ax.yaxis.set_label_position("left")
cbar.ax.tick_params(labelsize=6)
cbar.outline.set_linewidth(0)
return cbar
# Generate Matplotlib heatmap output
def heatmap_mpl(dfr, outfilename=None, title=None, params=None):
"""Returns matplotlib heatmap with cluster dendrograms.
- dfr - pandas DataFrame with relevant data
- outfilename - path to output file (indicates output format)
- params - a list of parameters for plotting: [colormap, vmin, vmax]
- labels - dictionary of alternative labels, keyed by default sequence
labels
- classes - dictionary of sequence classes, keyed by default sequence
labels
"""
# Layout figure grid and add title
# Set figure size by the number of rows in the dataframe
figsize = max(8, dfr.shape[0] * 0.175)
fig = plt.figure(figsize=(figsize, figsize))
# if title:
# fig.suptitle(title)
heatmap_gs = gridspec.GridSpec(2, 2, wspace=0.0, hspace=0.0, width_ratios=[0.3, 1], height_ratios=[0.3, 1])
# Add column and row dendrograms/axes to figure
coldend = add_mpl_dendrogram(dfr, fig, heatmap_gs, orientation="col")
rowdend = add_mpl_dendrogram(dfr, fig, heatmap_gs, orientation="row")
# Add heatmap axes to figure, with rows/columns as in the dendrograms
heatmap_axes = get_mpl_heatmap_axes(dfr, fig, heatmap_gs)
ax_map = heatmap_axes.imshow(
dfr.iloc[rowdend["dendrogram"]["leaves"], coldend["dendrogram"]["leaves"]],
interpolation="nearest",
cmap=params.cmap,
origin="lower",
vmin=params.vmin,
vmax=params.vmax,
aspect="auto",
)
# Are there class colourbars to add?
if params.classes is not None:
add_mpl_colorbar(dfr, fig, coldend, params, orientation="col")
add_mpl_colorbar(dfr, fig, rowdend, params, orientation="row")
# Add heatmap labels
add_mpl_labels(
heatmap_axes,
dfr.index[rowdend["dendrogram"]["leaves"]],
dfr.index[coldend["dendrogram"]["leaves"]],
params,
)
# Add colour scale
add_mpl_colorscale(fig, heatmap_gs, ax_map, params, title)
# Return figure output, and write, if required
plt.subplots_adjust(top=0.85) # Leave room for title
# fig.set_tight_layout(True)
# We know that there is a UserWarning here about tight_layout and
# using the Agg renderer on OSX, so catch and ignore it, for cleanliness.
with warnings.catch_warnings():
warnings.simplefilter("ignore")
heatmap_gs.tight_layout(fig, h_pad=0.1, w_pad=0.5)
if outfilename:
fig.savefig(outfilename)
return fig
|