1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
import sys
import multiprocessing
from . import helpers
import pybedtools
def _parallel_wrap(
orig_bedtool,
shuffle_kwargs,
genome_fn,
method,
method_args,
method_kwargs,
sort=False,
shuffle=True,
reduce_func=None,
):
"""
Given a BedTool object `orig_bedtool`, call its `method` with `args` and
`kwargs` and then call `reduce_func` on the results.
See parallel_apply docstring for details
"""
# note: be careful about cleaning up tempfiles
if not shuffle:
to_use = orig_bedtool
else:
shuffled = orig_bedtool.shuffle(g=genome_fn, **shuffle_kwargs)
if sort:
to_use = shuffled.sort()
helpers.close_or_delete(shuffled)
else:
to_use = shuffled
result = getattr(to_use, method)(*method_args, **method_kwargs)
if shuffle:
helpers.close_or_delete(to_use)
if reduce_func:
reduced = reduce_func(result)
if isinstance(result, pybedtools.BedTool):
helpers.close_or_delete(result)
return reduced
else:
return result
def parallel_apply(
orig_bedtool,
method,
genome=None,
genome_fn=None,
method_args=None,
method_kwargs=None,
shuffle_kwargs=None,
shuffle=True,
reduce_func=None,
processes=1,
sort=False,
_orig_pool=None,
iterations=1000,
debug=False,
report_iterations=False,
):
"""
Call an arbitrary BedTool method many times in parallel.
An example use-case is to generate a null distribution of intersections,
and then compare this to the actual intersections.
**Important:** due to a known file handle leak in BedTool.__len__, it's
best to simply check the number of lines in the file, as in the below
function. This works because BEDTools programs strip any non-interval lines
in the results.
>>> # set up example BedTools
>>> a = pybedtools.example_bedtool('a.bed')
>>> b = pybedtools.example_bedtool('b.bed')
>>> # Method of `a` to call:
>>> method = 'intersect'
>>> # Kwargs provided to `a.intersect` each iteration
>>> method_kwargs = dict(b=b, u=True)
>>> # Function that will be called on the results of
>>> # `a.intersect(**method_kwargs)`.
>>> def reduce_func(x):
... return sum(1 for _ in open(x.fn))
>>> # Create a small artificial genome for this test (generally you'd
>>> # use an assembly name, like "hg19"):
>>> genome = dict(chr1=(0, 1000))
>>> # Do 10 iterations using 1 process for this test (generally you'd
>>> # use 1000+ iterations, and as many processes as you have CPUs)
>>> results = pybedtools.parallel.parallel_apply(a, method, genome=genome,
... method_kwargs=method_kwargs, iterations=10, processes=1,
... reduce_func=reduce_func, debug=True, report_iterations=True)
>>> # get results
>>> print(list(results))
[1, 0, 1, 2, 4, 2, 2, 1, 2, 4]
>>> # We can compare this to the actual intersection:
>>> reduce_func(a.intersect(**method_kwargs))
3
Alternatively, we could use the `a.jaccard` method, which already does the
reduction to a dictionary. However, the Jaccard method requires the input
to be sorted. Here, we specify `sort=True` to sort each shuffled BedTool
before calling its `jaccard` method.
>>> from pybedtools.parallel import parallel_apply
>>> a = pybedtools.example_bedtool('a.bed')
>>> results = parallel_apply(a, method='jaccard', method_args=(b,),
... genome=genome, iterations=3, processes=1, sort=True, debug=True)
>>> for i in results:
... print(sorted(i.items()))
[('intersection', 12), ('jaccard', 0.0171184), ('n_intersections', 1), ('union', 701)]
[('intersection', 0), ('jaccard', 0.0), ('n_intersections', 0), ('union', 527)]
[('intersection', 73), ('jaccard', 0.137996), ('n_intersections', 1), ('union', 529)]
Parameters
----------
orig_bedtool : BedTool
method : str
The method of `orig_bedtool` to run
method_args : tuple
Passed directly to getattr(orig_bedtool, method)()
method_kwargs : dict
Passed directly to getattr(orig_bedtool, method)()
shuffle : bool
If True, then `orig_bedtool` will be shuffled at each iteration and
that shuffled version's `method` will be called with `method_args` and
`method_kwargs`.
shuffle_kwargs : dict
If `shuffle` is True, these are passed to `orig_bedtool.shuffle()`.
You do not need to pass the genome here; that's handled separately by
the `genome` and `genome_fn` kwargs.
iterations : int
Number of iterations to perform
genome : string or dict
If string, then assume it is the assembly name (e.g., hg19) and get
a dictionary of chromsizes for that assembly, then converts to
a filename.
genome_fn : str
Mutually exclusive with `genome`; `genome_fn` must be an existing
filename with the chromsizes. Use the `genome` kwarg instead if you'd
rather supply an assembly or dict.
reduce_func : callable
Function or other callable object that accepts, as its only argument,
the results from `orig_bedtool.method()`. For example, if you care
about the number of results, then you can use `reduce_func=len`.
processes : int
Number of processes to run. If `processes=1`, then multiprocessing is
not used (making it much easier to debug). This argument is ignored if
`_orig_pool` is provided.
sort : bool
If both `shuffle` and `sort` are True, then the shuffled BedTool will
then be sorted. Use this if `method` requires sorted input.
_orig_pool : multiprocessing.Pool instance
If provided, uses `_orig_pool` instead of creating one. In this case,
`processes` will be ignored.
debug : bool
If True, then use the current iteration index as the seed to shuffle.
report_iterations : bool
If True, then report the number of iterations to stderr.
"""
shuffle_kwargs = shuffle_kwargs or {}
method_args = method_args or ()
if not isinstance(method_args, list) and not isinstance(method_args, tuple):
raise ValueError(
"method_args must be a list or tuple, got %s" % type(method_args)
)
method_kwargs = method_kwargs or {}
if genome_fn and genome:
raise ValueError("only of of genome_fn or genome should be provided")
if shuffle:
if not genome_fn:
if not genome:
raise ValueError(
"shuffle=True, so either genome_fn" " or genome must be provided"
)
genome_fn = pybedtools.chromsizes_to_file(genome)
_parallel_wrap_kwargs = dict(
orig_bedtool=orig_bedtool,
shuffle_kwargs=shuffle_kwargs,
genome_fn=genome_fn,
method=method,
method_args=method_args,
method_kwargs=method_kwargs,
shuffle=shuffle,
reduce_func=reduce_func,
sort=sort,
)
def add_seed(i, kwargs):
if debug and shuffle:
kwargs["shuffle_kwargs"]["seed"] = i
return kwargs
if processes == 1:
for it in range(iterations):
yield _parallel_wrap(**add_seed(it, _parallel_wrap_kwargs))
return
if _orig_pool:
p = _orig_pool
else:
p = multiprocessing.Pool(processes)
results = [
p.apply_async(_parallel_wrap, (), add_seed(it, _parallel_wrap_kwargs))
for it in range(iterations)
]
for i, r in enumerate(results):
yield r.get()
if report_iterations:
sys.stderr.write("%s\r" % i)
sys.stderr.flush()
|