1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
/*!
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
*/
#pragma once
#include <algorithm>
#include <list>
#include <set>
#include <vector>
#include <pyclustering/container/kdtree.hpp>
#include <pyclustering/cluster/cure_data.hpp>
using namespace pyclustering::container;
namespace pyclustering {
namespace clst {
/*!
@class cure_cluster cure.hpp pyclustering/cluster/cure.hpp
@brief CURE cluster description.
*/
struct cure_cluster {
public:
std::vector<double> * mean; /**< Center of the cluster that is defined by mean value among cluster points. */
std::vector< std::vector<double> * > * points; /**< Points that are contained by the cluster. */
std::vector< std::vector<double> * > * rep; /**< Representative points of the cluster. */
cure_cluster * closest; /**< Pointer to the closest cluster. */
double distance_closest; /**< Distance to the closest cluster. */
public:
/*!
@brief Default constructor of CURE cluster.
*/
cure_cluster();
/*!
@brief Construct CURE cluster using signle point.
*/
explicit cure_cluster(std::vector<double> * point);
/*!
@brief Default destructor.
*/
~cure_cluster();
/*!
@brief Copy constructor is deleted due to safety reasons.
*/
cure_cluster(const cure_cluster & p_other) = delete;
public:
/*!
@brief Insert points to cluster.
*/
void insert_points(std::vector<std::vector<double> *> * append_points);
public:
/*!
@brief Assignment operator is deleted due to safety reasons.
*/
cure_cluster & operator=(const cure_cluster & p_other) = delete;
/*!
@brief Write object operator to represent CURE cluster by text.
*/
friend std::ostream & operator<<(std::ostream & p_stream, cure_cluster & p_cluster);
};
/*!
@class cure_cluster_comparator cure.hpp pyclustering/cluster/cure.hpp
@brief CURE cluster comparator using closest distance.
*/
class cure_cluster_comparator {
public:
/*!
@brief Defines compare procedure using closest distance without checking for nullptr.
@details Arguments are not checked for nullptr, this checking should be done by client code.
@param[in] obj1: pointer to left operand (CURE cluster 1).
@param[in] obj2: pointer to right operand (CURE cluster 2).
@return Returns `true` if left operand is less than right.
*/
bool operator()(const cure_cluster * const obj1, const cure_cluster * const obj2) const;
};
/*!
@class cure_queue cure.hpp pyclustering/cluster/cure.hpp
@brief Cure sorted queue of cure clusters. Sorting is defined by distances between clusters.
First element is always occupied by cluster whose distance to the neighbor cluster
is the smallest in the queue.
*/
class cure_queue {
private:
std::multiset<cure_cluster *, cure_cluster_comparator> * queue;
kdtree * tree;
private:
/*!
@brief Creates sorted queue of points for specified data.
@param[in] data: pointer to points.
*/
void create_queue(const dataset * data);
/*!
@brief Remove representative points of specified cluster from KD Tree.
@param[in] cluster: pointer to points.
*/
void remove_representative_points(cure_cluster * cluster);
/*!
@brief Insert representative points of specified cluster to KD tree.
@param[in] cluster: pointer to points.
*/
void insert_representative_points(cure_cluster * cluster);
/*!
@brief Insert cluster to sorted queue (it's not insertion of new object).
@details Used by sorting procedures.
@param[in] inserted_cluster: pointer to points.
*/
void insert_cluster(cure_cluster * inserted_cluster);
/*!
@brief Remove cluster from sorted queue (it's not removing of new object). Used by sorting
procedures.
@param[in] removed_cluster: pointer to points.
*/
void remove_cluster(cure_cluster * removed_cluster);
/*!
@brief Calculate distance between clusters.
@param[in] cluster1: pointer to cure cluster 1.
@param[in] cluster2: pointer to cure cluster 2.
@return Return distance between clusters.
*/
static double get_distance(cure_cluster * cluster1, cure_cluster * cluster2);
/*!
@brief Checks if all elements of a merged cluster are same.
@param[in] merged_cluster: pointer to cure merged_cluster.
@return Returns true if all the elements in the cluster were found to be same.
*/
static bool are_all_elements_same(cure_cluster * merged_cluster);
public:
/*!
@brief Iterator to iterate though CURE clusters in the sorted queue.
*/
using iterator = std::multiset<cure_cluster *, cure_cluster_comparator>::iterator;
/*!
@brief Constant iterator to iterate though CURE clusters in the sorted queue.
*/
using const_iterator = std::multiset<cure_cluster *, cure_cluster_comparator>::const_iterator;
/*!
@brief Default constructor of cure queue (always keeps sorted state).
*/
cure_queue();
/*!
@brief Default constructor of sorted queue of cure clusters.
@param[in] data: pointer to points.
*/
explicit cure_queue(const std::vector< std::vector<double> > * data);
/*!
@brief Default copy constructor of sorted queue of cure clusters is forbidden.
@param[in] p_other: other cure queue to copy.
*/
cure_queue(const cure_queue & p_other) = delete;
/*!
@brief Default destructor.
*/
~cure_queue();
/*!
@brief Merge cure clusters in line with the rule of merging of cure algorithm.
@param[in,out] cluster1: pointer to cure cluster 1.
@param[in,out] cluster2: pointer to cure cluster 2.
@param[in] number_repr_points: number of representative points for merged cluster.
@param[in] compression: level of compression for calculation representative points.
*/
void merge(cure_cluster * cluster1, cure_cluster * cluster2, const size_t number_repr_points, const double compression);
/*!
@brief Returns iterator to the first CURE cluster.
*/
inline iterator begin() { return queue->begin(); }
/*!
@brief Returns constant iterator to the first CURE cluster.
*/
inline const_iterator begin() const { return queue->begin(); };
/*!
@brief Returns iterator to the end of CURE cluster collection (not a last element).
*/
inline iterator end() { return queue->end(); }
/*!
@brief Returns constant iterator to the end of CURE cluster collection (not a last element).
*/
inline const_iterator end() const { return queue->end(); }
/*!
@brief Returns amount of CURE clusters in the queue.
*/
inline std::size_t size() const { return queue->size(); }
public:
/*!
@brief Assignment operator is forbidden.
@param[in] p_other: other cure queue to copy.
*/
cure_queue & operator=(const cure_queue & p_other) = delete;
};
/*!
@class relocation_info cure.hpp pyclustering/cluster/cure.hpp
@brief Defines relocation request for specific cluster in CURE queue.
*/
class relocation_info {
private:
cure_queue::iterator m_cluster_iterator;
cure_cluster * m_closest_cluster;
double m_closest_distance;
public:
/*!
@brief Constructor for relocation request.
@param[in] cluster_iterator: iterator that points to the cluster in the queue.
@param[in] closest_cluster: new closest cluster for the cluster that should be relocated.
@param[in] closest_distance: distance to the closest cluster.
*/
relocation_info(const cure_queue::iterator & cluster_iterator, cure_cluster * closest_cluster, const double closest_distance);
public:
/*!
@brief Returns iterator to cluster in CURE queue.
@return Iterator to cluster in CURE queue that should be relocated.
*/
cure_queue::iterator get_cluster_iterator() const;
/*!
@brief Returns distance to the closest cluster.
@return Distance to the closest cluster.
*/
double get_closest_distance() const;
/*!
@brief Returns pointer to the closest cluster.
@return Pointer to the closest cluster.
*/
cure_cluster * get_closest_cluster();
};
/*!
@class cure cure.hpp pyclustering/cluster/cure.hpp
@brief CURE clustering algorithm that employes a hierarchical clustering algorithm that adopts a middle
ground between the centroid-based and the all-point extremes.
@details CURE algorithm identifies clusters having non-spherical shapes and wide variances in size. CURE
algorithm represents each cluster by a certain fixed number of points that are generated
by selecting well scattered points from the cluster and then shrinking them toward the center
of the cluster by a specified fraction. Having more than one representative point per cluster
allows CURE to adjust well to the geometry of non-spherical shapes.
Implementation based on paper @cite article::cure::1.
*/
class cure {
private:
cure_queue * queue;
std::size_t number_points;
std::size_t number_clusters;
double compression;
const dataset * data;
public:
/*!
@brief Default CURE algorithm constructor.
*/
cure() = default;
/*!
@brief Constructor of CURE algorithm.
@param[in] clusters_number: number of clusters that should be allocated.
@param[in] points_number: number of representative points in each cluster.
@param[in] level_compression: level of compression for calculation new representative points for merged cluster.
*/
cure(const size_t clusters_number, const size_t points_number, const double level_compression);
/*!
@brief Default destructor.
*/
~cure();
public:
/*!
@brief Performs cluster analysis of an input data.
@param[in] p_data: input data for cluster analysis.
@param[out] p_result: clustering result of an input data.
*/
void process(const dataset & p_data, cure_data & p_result);
};
}
}
|