1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
|
/*!
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
*/
#pragma once
#include <memory>
#include <vector>
#include <pyclustering/cluster/cluster_data.hpp>
namespace pyclustering {
namespace clst {
/*!
@class dbscan_data dbscan_data.hpp pyclustering/cluster/dbscan_data.hpp
@brief Clustering results of DBSCAM algorithm that consists of information about allocated
clusters and noise (points that are not related to any cluster).
*/
class dbscan_data : public cluster_data {
private:
clst::noise m_noise;
public:
/*!
@brief Default constructor that creates empty clustering data.
*/
dbscan_data() = default;
/*!
@brief Copy constructor of DBSCAN clustering data.
@param[in] p_other: another DBSCAN clustering data.
*/
dbscan_data(const dbscan_data & p_other) = default;
/*!
@brief Move constructor of DBSCAN clustering data.
@param[in] p_other: another clustering data.
*/
dbscan_data(dbscan_data && p_other) = default;
/*!
@brief Default destructor that destroys DBSCAN clustering data.
*/
virtual ~dbscan_data() = default;
public:
/*!
@brief Returns reference to outliers represented by indexes.
*/
clst::noise & noise() { return m_noise; }
/*!
@brief Returns constant reference to outliers represented by indexes.
*/
const clst::noise & noise() const { return m_noise; }
};
}
}
|