1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
/*!
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
*/
#pragma once
#include <vector>
namespace pyclustering {
namespace clst {
/*!
@brief Sequence container to store within cluster errors (WCE) for each K-value.
*/
using wce_sequence = std::vector<double>;
/*!
@class elbow_data elbow_data.hpp pyclustering/cluster/elbow_data.hpp
@brief Elbow analysis result that contain information about optimal amount of clusters and
total within cluster errors (WCE) for each K-value.
*/
class elbow_data {
private:
std::size_t m_amount = 0;
wce_sequence m_wce = { };
public:
/*!
@brief Default constructor of the Elbow result.
*/
elbow_data() = default;
/*!
@brief Default desctructor of the Elbow result.
*/
~elbow_data() = default;
public:
/*!
@brief Returns constant reference to total within cluster errors (WCE) for each K-value.
@return Constant reference to total within cluster errors (WCE) for each K-value.
*/
const wce_sequence & get_wce() const { return m_wce; }
/*!
@brief Returns reference to total within cluster errors (WCE) for each K-value.
@return Reference to total within cluster errors (WCE) for each K-value.
*/
wce_sequence & get_wce() { return m_wce; }
/*!
@brief Set optimal amount of clusters.
@details The method is used by Elbow method to set the final analysis result.
*/
void set_amount(const std::size_t p_amount) { m_amount = p_amount; }
/*!
@brief Returns optimal amount of clusters.
@return Optimal amount of clusters.
*/
std::size_t get_amount() const { return m_amount; }
};
}
}
|