File: mbsas.hpp

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (73 lines) | stat: -rwxr-xr-x 1,764 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
/*!

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

*/

#pragma once


#include <pyclustering/cluster/bsas.hpp>
#include <pyclustering/cluster/mbsas_data.hpp>

#include <pyclustering/utils/metric.hpp>


using namespace pyclustering::utils::metric;


namespace pyclustering {

namespace clst {


/*!

@class    mbsas mbsas.hpp pyclustering/cluster/mbsas.hpp

@brief    Class represents MBSAS (Modified Basic Sequential Algorithmic Scheme).
@details  Interface of MBSAS algorithm is the same as for BSAS. This algorithm performs clustering in two steps.
           The first - is determination of amount of clusters. The second - is assignment of points that were not
           marked as a cluster representatives to clusters.

*/
class mbsas : public bsas {
public:
    /*!

    @brief    Default constructor of the clustering algorithm.

    */
    mbsas() = default;

    /*!

    @brief    Creates MBSAS algorithm using specified parameters.

    @param[in] p_amount: amount of clusters that should be allocated.
    @param[in] p_threshold: threshold of dissimilarity (maximum distance) between points.
    @param[in] p_metric: metric for distance calculation between points.

    */
    mbsas(const std::size_t p_amount,
          const double p_threshold,
          const distance_metric<point> & p_metric = distance_metric_factory<point>::euclidean());

public:
    /*!
    
    @brief    Performs cluster analysis of an input data.
    
    @param[in]  p_data: input data for cluster analysis.
    @param[out] p_result: clustering result of an input data.
    
    */
    void process(const dataset & p_data, mbsas_data & p_result);
};


}

}