File: silhouette_ksearch_data.hpp

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (107 lines) | stat: -rwxr-xr-x 2,395 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
/*!

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

*/

#pragma once


#include <pyclustering/definitions.hpp>


namespace pyclustering {

namespace clst {


using silhouette_score_sequence = std::vector<double>;


/*!

@class    silhouette_ksearch_data silhouette_ksearch_data.hpp pyclustering/cluster/silhouette_ksearch_data.hpp

@brief    Defines result of silhouette K-search algorithm.

*/
class silhouette_ksearch_data {
private:
    std::size_t m_amount = 0;
    double      m_score  = 0;
    silhouette_score_sequence m_scores = { };

public:
    /*!
    
    @brief  Return optimal amount of clusters.

    @return Optimal amount of clusters.
    
    */
    const std::size_t get_amount() const;

    /*!

    @brief  Set optimal amount of clusters (this method is used by Silhouette K-search algorithm).

    @param[in] p_amount: optimal amount of clusters.

    */
    void set_amount(const std::size_t p_amount);

    /*!
    
    @brief  Returns optimal amount of clusters that has been found during the analysis.

    @return Optimal amount of clusters that has been found during the analysis.

    */
    const double get_score() const;

    /*!

    @brief  Set optimal amount of clusters that has been found during the analysis (this method is used by Silhouette K-search algorithm).

    @param[in] p_score: optimal amount of clusters that has been found during the analysis.

    */
    void set_score(const double p_score);

    /*!
    
    @brief  Returns constant reference to silhouette score for each K value (amount of clusters).

    @return Constant reference to silhouette score for each K value (amount of clusters).
    
    */
    const silhouette_score_sequence & scores() const;

    /*!

    @brief  Returns reference to silhouette score for each K value (amount of clusters).

    @return Reference to silhouette score for each K value (amount of clusters).

    */
    silhouette_score_sequence & scores();

public:
    /*!

    @brief    Compares Silhouette K-search results.

    @param[in] p_other: another Silhouette K-search result that is used for comparison.

    @return  Returns true if both objects are the same.

    */
    bool operator==(const silhouette_ksearch_data & p_other) const;
};


}

}