File: silhouette_interface.h

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (97 lines) | stat: -rwxr-xr-x 3,211 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/*!

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

*/

#pragma once


#include <pyclustering/interface/pyclustering_package.hpp>

#include <pyclustering/cluster/silhouette_ksearch.hpp>

#include <pyclustering/definitions.hpp>


/**
 *
 * @brief   Silhouette K-Search result is returned using pyclustering_package that consist sub-packages and this enumerator provides
 *           named indexes for sub-packages.
 *
 */
enum silhouette_ksearch_package_indexer {
    SILHOUETTE_KSEARCH_PACKAGE_AMOUNT = 0,
    SILHOUETTE_KSEARCH_PACKAGE_SCORE,
    SILHOUETTE_KSEARCH_PACKAGE_SCORES,
    SILHOUETTE_KSEARCH_PACKAGE_SIZE
};


/**
 *
 * @brief   Silhouette K-Search cluster allocators.
 *
 */
enum silhouette_ksearch_type {
    KMEANS = 0,
    KMEDIANS,
    KMEDOIDS
};


/**
 *
 * @brief   Returns cluster allocator for Silhouette K-Search algorithm.
 *
 * @param[in] p_algorithm: cluster allocator type that should be created.
 *
 * @return  Returns cluster allocator.
 *
 */
pyclustering::clst::silhouette_ksearch_allocator::ptr get_silhouette_ksearch_allocator(
    const silhouette_ksearch_type p_algorithm);


/**
 *
 * @brief   Performs data analysis using Silhouette method using center initializer that is specified by template.
 * @details Caller should destroy returned result by 'free_pyclustering_package'.
 *
 * @param[in] p_sample: input data for clustering.
 * @param[in] p_clusters: clusters that have been allocated for that data.
 * @param[in] p_metric: pointer to distance metric 'distance_metric' that is used for distance calculation between two points.
 * @param[in] p_data_type: defines data type that is used for clustering process ('0' - points, '1' - distance matrix).
 *
 * @return  Returns Silhouette's analysis results as a pyclustering package [ scores ].
 *
 */
extern "C" DECLARATION pyclustering_package * silhouette_algorithm(
    const pyclustering_package * const p_sample,
    const pyclustering_package * const p_clusters,
    const void * const p_metric,
    const std::size_t p_data_type);


/**
 *
 * @brief   Performs data analysis using Silhouette K-Search algorithm using center initializer that is specified by template.
 * @details Caller should destroy returned result by 'free_pyclustering_package'.
 *
 * @param[in] p_sample: input data for clustering.
 * @param[in] p_kmin: minimum amount of clusters that should be considered.
 * @param[in] p_kmax: maximum amount of clusters that should be considered.
 * @param[in] p_metric: cluster allocator that is used by Silhouette K-Search method.
 * @param[in] p_random_state: seed for random state (by default is `RANDOM_STATE_CURRENT_TIME`, current system time is used).
 *
 * @return  Returns Silhouette K-Search results as a pyclustering package [ [ amount of clusters], [ optimal score ], [ score for each K ] ].
 *
 */
extern "C" DECLARATION pyclustering_package * silhouette_ksearch_algorithm(
    const pyclustering_package * const p_sample,
    const std::size_t p_kmin,
    const std::size_t p_kmax,
    const std::size_t p_algorithm,
    const long long p_random_state);