1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
|
/*!
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
*/
#pragma once
#include <pyclustering/definitions.hpp>
#include <algorithm>
#include <cmath>
#include <exception>
#include <functional>
#include <string>
#include <vector>
namespace pyclustering {
namespace utils {
namespace metric {
/*!
@brief Encapsulates distance metric calculation function between two objects.
*/
template <typename TypeContainer>
using distance_functor = std::function<double(const TypeContainer &, const TypeContainer &)>;
/*!
@brief Calculates square of Euclidean distance between points.
@param[in] point1: point #1 that is represented by coordinates.
@param[in] point2: point #2 that is represented by coordinates.
@return Returns square of Euclidean distance between points.
*/
template <typename TypeContainer>
double euclidean_distance_square(const TypeContainer & point1, const TypeContainer & point2) {
double distance = 0.0;
typename TypeContainer::const_iterator iter_point1 = point1.begin();
for (const auto & dim_point2 : point2) {
double difference = (*iter_point1 - dim_point2);
distance += difference * difference;
++iter_point1;
}
return distance;
}
/*!
@brief Calculates Euclidean distance between points.
@param[in] point1: point #1 that is represented by coordinates.
@param[in] point2: point #2 that is represented by coordinates.
@return Returns Euclidean distance between points.
*/
template <typename TypeContainer>
double euclidean_distance(const TypeContainer & point1, const TypeContainer & point2) {
return std::sqrt(euclidean_distance_square(point1, point2));
}
/*!
@brief Calculates Manhattan distance between points.
@param[in] point1: point #1 that is represented by coordinates.
@param[in] point2: point #2 that is represented by coordinates.
@return Returns Manhattan distance between points.
*/
template <typename TypeContainer>
double manhattan_distance(const TypeContainer & point1, const TypeContainer & point2) {
double distance = 0.0;
typename TypeContainer::const_iterator iter_point1 = point1.begin();
for (const auto & dim_point2 : point2) {
distance += std::abs(*iter_point1 - dim_point2);
++iter_point1;
}
return distance;
}
/*!
@brief Calculates Chebyshev distance between points.
@param[in] point1: point #1 that is represented by coordinates.
@param[in] point2: point #2 that is represented by coordinates.
@return Returns Chebyshev distance between points.
*/
template <typename TypeContainer>
double chebyshev_distance(const TypeContainer & point1, const TypeContainer & point2) {
double distance = 0.0;
typename TypeContainer::const_iterator iter_point1 = point1.begin();
for (const auto & dim_point2 : point2) {
distance = std::max(distance, std::abs(*iter_point1 - dim_point2));
++iter_point1;
}
return distance;
}
/*!
@brief Calculates Minkowski distance between points.
@param[in] p_point1: point #1 that is represented by coordinates.
@param[in] p_point2: point #2 that is represented by coordinates.
@param[in] p_degree: degree of Minkownski equation.
@return Returns Minkowski distance between points.
*/
template <typename TypeContainer>
double minkowski_distance(const TypeContainer & p_point1, const TypeContainer & p_point2, const double p_degree) {
double distance = 0.0;
typename TypeContainer::const_iterator iter_point1 = p_point1.begin();
for (const auto & dim_point2 : p_point2) {
double difference = (*iter_point1 - dim_point2);
distance += std::pow(difference, p_degree);
++iter_point1;
}
return std::pow(distance, 1.0 / p_degree);
}
/*!
@brief Calculates Canberra distance between points.
@param[in] point1: point #1 that is represented by coordinates.
@param[in] point2: point #2 that is represented by coordinates.
@return Returns Canberra distance between points.
*/
template <typename TypeContainer>
double canberra_distance(const TypeContainer & point1, const TypeContainer & point2) {
double distance = 0.0;
typename TypeContainer::const_iterator iter_point1 = point1.begin();
for (const auto & dim_point2 : point2) {
const auto dim_point1 = *iter_point1;
const double divider = std::abs(dim_point1) + std::abs(dim_point2);
if (divider == 0) {
continue;
}
distance += std::abs(dim_point1 - dim_point2) / divider;
++iter_point1;
}
return distance;
}
/*!
@brief Calculates Chi square distance between points.
@param[in] point1: point #1 that is represented by coordinates.
@param[in] point2: point #2 that is represented by coordinates.
@return Returns Chi square distance between points.
*/
template <typename TypeContainer>
double chi_square_distance(const TypeContainer & point1, const TypeContainer & point2) {
double distance = 0.0;
typename TypeContainer::const_iterator iter_point1 = point1.begin();
for (const auto & dim_point2 : point2) {
const auto dim_point1 = *iter_point1;
const double divider = std::abs(dim_point1) + std::abs(dim_point2);
if (divider == 0) {
continue;
}
distance += std::pow(dim_point1 - dim_point2, 2) / divider;
++iter_point1;
}
return distance;
}
/*!
@brief Calculates Gower distance between points.
@param[in] p_point1: point #1 that is represented by coordinates.
@param[in] p_point2: point #2 that is represented by coordinates.
@param[in] p_max_range: max range in each data dimension.
@return Returns Gower distance between points.
*/
template <typename TypeContainer>
double gower_distance(const TypeContainer & p_point1, const TypeContainer & p_point2, const TypeContainer & p_max_range) {
double distance = 0.0;
typename TypeContainer::const_iterator iter_point1 = p_point1.begin();
typename TypeContainer::const_iterator iter_range = p_max_range.begin();
for (const auto & dim_point2 : p_point2) {
if (*iter_range != 0.0) {
distance += std::abs(*iter_point1 - dim_point2) / *iter_range;
}
++iter_point1;
++iter_range;
}
return distance / p_point1.size();
}
/*!
@class distance_metric metric.hpp pyclustering/utils/metric.hpp
@brief Basic distance metric provides interface for calculation distance between objects in line with
specific metric.
*/
template <typename TypeContainer>
class distance_metric {
protected:
distance_functor<TypeContainer> m_functor = nullptr; /**< Function that defines metric calculation. */
public:
/*!
@brief Default constructor of distance metric.
*/
distance_metric() = default;
/*!
@brief Parameterized constructor of distance metric.
@param[in] p_functor: function that defines how to calculate distance metric.
*/
explicit distance_metric(const distance_functor<TypeContainer> & p_functor) : m_functor(p_functor) { }
/*!
@brief Default copy constructor of distance metric.
@param[in] p_other: other distance metric that should be copied.
*/
distance_metric(const distance_metric & p_other) = default;
/*!
@brief Default move constructor of distance metric.
@param[in] p_other: other distance metric that should be copied.
*/
distance_metric(distance_metric && p_other) = default;
/*!
@brief Default destructor of distance metric.
*/
virtual ~distance_metric() = default;
public:
/*!
@brief Performs calculation of distance metric between two points.
@param[in] p_point1: the first iterable point.
@param[in] p_point2: the second iterable point.
@return Calculated distance between two points.
*/
double operator()(const TypeContainer & p_point1, const TypeContainer & p_point2) const {
return m_functor(p_point1, p_point2);
}
public:
/*!
@brief Check if the distance metric is initialized.
@return `true` if distance metric has been initialized by a non-nullptr function that defines how to
calculate distance metric.
*/
operator bool() const {
return m_functor != nullptr;
}
/*!
@brief Assignment operator to copy distance metric.
@param[in] p_other: other distance metric that should be copied.
@return Reference to the distance metric.
*/
distance_metric<TypeContainer>& operator=(const distance_metric<TypeContainer>& p_other) {
if (this != &p_other) {
m_functor = p_other.m_functor;
}
return *this;
}
};
/*!
@class euclidean_distance_metric metric.hpp pyclustering/utils/metric.hpp
@brief Euclidean distance metric calculator between two points.
\f[dist(a, b) = \sqrt{ \sum_{i=0}^{N}(a_{i} - b_{i})^{2} };\f]
*/
template <typename TypeContainer>
class euclidean_distance_metric : public distance_metric<TypeContainer> {
public:
/*!
@brief Constructor of Euclidean distance metric.
*/
euclidean_distance_metric() :
distance_metric<TypeContainer>(std::bind(euclidean_distance<TypeContainer>, std::placeholders::_1, std::placeholders::_2))
{ }
};
/*!
@class euclidean_distance_square_metric metric.hpp pyclustering/utils/metric.hpp
@brief Square Euclidean distance metric calculator between two points.
\f[dist(a, b) = \sum_{i=0}^{N}(a_{i} - b_{i})^{2};\f]
*/
template <typename TypeContainer>
class euclidean_distance_square_metric : public distance_metric<TypeContainer> {
public:
/*!
@brief Constructor of square Euclidean distance metric.
*/
euclidean_distance_square_metric() :
distance_metric<TypeContainer>(std::bind(euclidean_distance_square<TypeContainer>, std::placeholders::_1, std::placeholders::_2))
{ }
};
/*!
@class manhattan_distance_metric metric.hpp pyclustering/utils/metric.hpp
@brief Manhattan distance metric calculator between two points.
\f[dist(a, b) = \sum_{i=0}^{N}\left | a_{i} - b_{i} \right |;\f]
*/
template <typename TypeContainer>
class manhattan_distance_metric : public distance_metric<TypeContainer> {
public:
/*!
@brief Constructor of Manhattan distance metric.
*/
manhattan_distance_metric() :
distance_metric<TypeContainer>(std::bind(manhattan_distance<TypeContainer>, std::placeholders::_1, std::placeholders::_2))
{ }
};
/*!
@class chebyshev_distance_metric metric.hpp pyclustering/utils/metric.hpp
@brief Chebyshev distance metric calculator between two points.
@details Chebyshev distance is a metric defined on a vector space where the distance between two vectors is the
greatest of their differences along any coordinate dimension.
\f[dist(a, b) = \max_{}i\left (\left | a_{i} - b_{i} \right |\right );\f]
*/
template <typename TypeContainer>
class chebyshev_distance_metric : public distance_metric<TypeContainer> {
public:
/*!
@brief Constructor of Chebyshev distance metric.
*/
chebyshev_distance_metric() :
distance_metric<TypeContainer>(std::bind(chebyshev_distance<TypeContainer>, std::placeholders::_1, std::placeholders::_2))
{ }
};
/*!
@class minkowski_distance_metric metric.hpp pyclustering/utils/metric.hpp
@brief Minkowski distance metric calculator between two points.
\f[dist(a, b) = \sqrt[p]{ \sum_{i=0}^{N}\left(a_{i} - b_{i}\right)^{p} };\f]
*/
template <typename TypeContainer>
class minkowski_distance_metric : public distance_metric<TypeContainer> {
public:
/*!
@brief Constructor of Minkowski distance metric.
@param[in] p_degree: degree of Minkowski equation.
*/
explicit minkowski_distance_metric(const double p_degree) :
distance_metric<TypeContainer>(std::bind(minkowski_distance<TypeContainer>, std::placeholders::_1, std::placeholders::_2, p_degree))
{ }
};
/*!
@class canberra_distance_metric metric.hpp pyclustering/utils/metric.hpp
@brief Canberra distance metric calculator between two points.
\f[dist(a, b) = \sum_{i=0}^{N}\frac{\left | a_{i} - b_{i} \right |}{\left | a_{i} \right | + \left | b_{i} \right |};\f]
*/
template <typename TypeContainer>
class canberra_distance_metric : public distance_metric<TypeContainer> {
public:
/*!
@brief Constructor of Canberra distance metric.
*/
canberra_distance_metric() :
distance_metric<TypeContainer>(std::bind(canberra_distance<TypeContainer>, std::placeholders::_1, std::placeholders::_2))
{ }
};
/*!
@class chi_square_distance_metric metric.hpp pyclustering/utils/metric.hpp
@brief Chi square distance metric calculator between two points.
\f[dist(a, b) = \sum_{i=0}^{N}\frac{\left ( a_{i} - b_{i} \right )^{2}}{\left | a_{i} \right | + \left | b_{i} \right |};\f]
*/
template <typename TypeContainer>
class chi_square_distance_metric : public distance_metric<TypeContainer> {
public:
/*!
@brief Constructor of Chi square distance metric.
*/
chi_square_distance_metric() :
distance_metric<TypeContainer>(std::bind(chi_square_distance<TypeContainer>, std::placeholders::_1, std::placeholders::_2))
{ }
};
/*!
@class gower_distance_metric metric.hpp pyclustering/utils/metric.hpp
@brief Gower distance metric calculator between two points.
@details Implementation is based on the paper @cite article::utils::metric::gower. Gower distance is calculate
using following formula:
\f[
dist\left ( a, b \right )=\frac{1}{p}\sum_{i=0}^{p}\frac{\left | a_{i} - b_{i} \right |}{R_{i}},
\f]
where \f$R_{i}\f$ is a max range for ith dimension. \f$R\f$ is defined in line following formula:
\f[
R=max\left ( X \right )-min\left ( X \right )
\f]
*/
template <typename TypeContainer>
class gower_distance_metric : public distance_metric<TypeContainer> {
public:
/*!
@brief Constructor of Gower distance metric.
@param[in] p_max_range: max range in each data dimension.
*/
explicit gower_distance_metric(const TypeContainer & p_max_range) :
distance_metric<TypeContainer>(std::bind(gower_distance<TypeContainer>, std::placeholders::_1, std::placeholders::_2, p_max_range))
{ }
};
/*!
@class distance_metric_factory metric.hpp pyclustering/utils/metric.hpp
@brief Distance metric factory provides services for creation available metric in the 'pyclustering::utils::metric' and also user-defined.
*/
template <typename TypeContainer>
class distance_metric_factory {
public:
/*!
@brief Creates Euclidean distance metric.
@return Euclidean distance metric.
*/
static distance_metric<TypeContainer> euclidean() {
return euclidean_distance_metric<TypeContainer>();
}
/*!
@brief Creates square Euclidean distance metric.
@return Square Euclidean distance metric
*/
static distance_metric<TypeContainer> euclidean_square() {
return euclidean_distance_square_metric<TypeContainer>();
}
/*!
@brief Creates Manhattan distance metric.
@return Manhattan distance metric.
*/
static distance_metric<TypeContainer> manhattan() {
return manhattan_distance_metric<TypeContainer>();
}
/*!
@brief Creates Chebyshev distance metric.
@return Chebyshev distance metric.
*/
static distance_metric<TypeContainer> chebyshev() {
return chebyshev_distance_metric<TypeContainer>();
}
/*!
@brief Creates Minkowski distance metric.
@param[in] p_degree: degree of Minkowski equation.
@return Minkowski distance metric.
*/
static distance_metric<TypeContainer> minkowski(const double p_degree) {
return minkowski_distance_metric<TypeContainer>(p_degree);
}
/*!
@brief Creates Canberra distance metric.
@return Canberra distance metric.
*/
static distance_metric<TypeContainer> canberra() {
return canberra_distance_metric<TypeContainer>();
}
/*!
@brief Creates Chi square distance metric.
@return Chi square distance metric.
*/
static distance_metric<TypeContainer> chi_square() {
return chi_square_distance_metric<TypeContainer>();
}
/*!
@brief Creates Gower distance metric.
@param[in] p_max_range: max range in each data dimension.
@return Gower distance metric.
*/
static distance_metric<TypeContainer> gower(const TypeContainer & p_max_range) {
return gower_distance_metric<TypeContainer>(p_max_range);
}
/*!
@brief Creates user-defined distance metric.
@param[in] p_functor: user-defined metric for calculation distance between two points.
@return User-defined distance metric.
*/
static distance_metric<TypeContainer> user_defined(const distance_functor<TypeContainer> & p_functor) {
return distance_metric<TypeContainer>(p_functor);
}
};
/*!
@brief Returns average distance for establish links between specified number of neighbors.
@param[in] points: input data.
@param[in] num_neigh: number of neighbors.
@return Returns average distance for establish links between `num_neigh` in data set `points`.
*/
double average_neighbor_distance(const std::vector<std::vector<double> > * points, const std::size_t num_neigh);
/*!
@brief Finds farthest distance between points in specified container (data).
@param[in] p_container: input data.
@param[in] p_metric: metric that is used for distance calculation between points.
@return Returns farthest distance between points.
*/
template <typename TypeContainer>
double farthest_distance(const TypeContainer & p_container, const distance_metric<point> & p_metric)
{
double distance = 0;
for (std::size_t i = 0; i < p_container.size(); i++) {
for (std::size_t j = i + 1; j < p_container.size(); j++) {
double candidate_distance = p_metric(p_container[i], p_container[j]);
if (candidate_distance > distance) {
distance = candidate_distance;
}
}
}
return distance;
}
/*!
@brief Calculates distance matrix using points container using Euclidean distance.
@param[in] p_points: input data that is represented by points.
@param[in] p_metric: metric for distance calculation between points.
@param[out] p_distance_matrix: output distance matrix of points.
*/
template <typename TypeContainer>
void distance_matrix(const TypeContainer & p_points, const distance_metric<point> & p_metric, TypeContainer & p_distance_matrix) {
using TypeElement = typename TypeContainer::value_type;
p_distance_matrix = TypeContainer(p_points.size(), TypeElement(p_points.size(), 0.0));
for (std::size_t i = 0; i < p_points.size(); i++) {
for (std::size_t j = i + 1; j < p_points.size(); j++) {
const double distance = p_metric(p_points.at(i), p_points.at(j));
p_distance_matrix[i][j] = distance;
p_distance_matrix[j][i] = distance;
}
}
}
/*!
@brief Calculates distance matrix using points container using Euclidean distance.
@param[in] p_points: input data that is represented by points.
@param[out] p_distance_matrix: output distance matrix of points.
*/
template <typename TypeContainer>
void distance_matrix(const TypeContainer & p_points, TypeContainer & p_distance_matrix) {
distance_matrix(p_points, distance_metric_factory<point>::euclidean(), p_distance_matrix);
}
}
}
}
|