File: utenv_check.hpp

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (111 lines) | stat: -rwxr-xr-x 3,180 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/*!

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

*/


#pragma once


#include <algorithm>
#include <vector>

#include <gtest/gtest.h>

#include <pyclustering/cluster/cluster_data.hpp>
#include <pyclustering/definitions.hpp>


using namespace pyclustering;
using namespace pyclustering::clst;


/**
*
* @brief    Checks that clusters have all allocated objects together from input data and that
*           sizes of allocated clusters are expected.
* @details  If 'p_expected_cluster_length' is empty than only total number of allocated object
*           is checked - clusters consist of each point index from input data.
*
* @param[in] p_data: data that has been processed.
* @param[in] p_actual_clusters: allocated clusters.
* @param[in] p_expected_cluster_length: expected clusters length - can be empty.
* @param[in] p_indexes: specific object indexes that are used for clustering.
*
*/
void ASSERT_CLUSTER_SIZES(
    const dataset & p_data,
    const cluster_sequence & p_actual_clusters,
    const std::vector<size_t> & p_expected_cluster_length,
    const index_sequence & p_indexes = { });


void ASSERT_CLUSTER_NOISE_SIZES(
    const dataset & p_data,
    const cluster_sequence & p_actual_clusters,
    const std::vector<std::size_t> & p_expected_cluster_length,
    const noise & p_actual_noise,
    const std::size_t & p_expected_noise_length,
    const index_sequence & p_indexes = { });


template <typename EnsemblesType>
bool COMPARE_SYNC_ENSEMBLES(
    EnsemblesType & p_ensembles,
    EnsemblesType & p_expected_ensembles,
    typename EnsemblesType::value_type & p_dead,
    typename EnsemblesType::value_type & p_expected_dead)
{
    /* compare dead neurons */
    std::sort(p_dead.begin(), p_dead.end());
    std::sort(p_expected_dead.begin(), p_expected_dead.end());

    if (p_expected_dead != p_dead) {
        return false;
    }


    /* compare ensembles */
    if (p_expected_ensembles.size() != p_ensembles.size()) {
        return false;
    }

    /* sort indexes in ensembles */
    for (auto & ensemble : p_ensembles) {
        std::sort(ensemble.begin(), ensemble.end());
    }

    for (auto & ensemble : p_expected_ensembles) {
        std::sort(ensemble.begin(), ensemble.end());
    }

    /* compare */
    bool ensemble_found = false;
    for (auto & ensemble : p_ensembles) {
        for (auto & expected_ensemble : p_expected_ensembles) {
            if (ensemble == expected_ensemble) {
                ensemble_found = true;
                break;
            }
        }

        if (!ensemble_found) {
            return false;
        }
    }

    return true;
}


template <typename EnsemblesType>
void ASSERT_SYNC_ENSEMBLES(EnsemblesType & p_ensembles,
                           EnsemblesType & p_expected_ensembles,
                           typename EnsemblesType::value_type & p_dead,
                           typename EnsemblesType::value_type & p_expected_dead)
{
    ASSERT_TRUE(COMPARE_SYNC_ENSEMBLES(p_ensembles, p_expected_ensembles, p_dead, p_expected_dead));
}