File: utest-interface-kmeans.cpp

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (41 lines) | stat: -rwxr-xr-x 1,152 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/*!

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

*/

#include <gtest/gtest.h>

#include <pyclustering/interface/kmeans_interface.h>
#include <pyclustering/interface/pyclustering_package.hpp>

#include <pyclustering/utils/metric.hpp>

#include "utenv_utils.hpp"

#include <memory>


using namespace pyclustering;
using namespace pyclustering::utils::metric;


TEST(utest_interface_kmeans, kmeans_api) {
    std::shared_ptr<pyclustering_package> sample = pack(dataset({ { 1 }, { 2 }, { 3 }, { 10 }, { 11 }, { 12 } }));
    std::shared_ptr<pyclustering_package> centers = pack(dataset({ { 1 }, { 10 } }));

    distance_metric<point> metric = distance_metric_factory<point>::euclidean_square();

    pyclustering_package * kmeans_result = kmeans_algorithm(sample.get(), centers.get(), 0.001, 200, false, &metric);
    ASSERT_NE(nullptr, kmeans_result);

    delete kmeans_result;
    kmeans_result = nullptr;

    kmeans_result = kmeans_algorithm(sample.get(), centers.get(), 0.1, 100, true, &metric);
    ASSERT_NE(nullptr, kmeans_result);

    delete kmeans_result;
}