1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
/*!
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
*/
#include <gtest/gtest.h>
#include "samples.hpp"
#include <pyclustering/cluster/kmedians.hpp>
#include "utenv_check.hpp"
using namespace pyclustering;
using namespace pyclustering::clst;
static void
template_kmedians_length_process_data(const dataset_ptr & p_data,
const dataset & p_start_medians,
const std::vector<size_t> & p_expected_cluster_length,
const std::size_t p_itermax = kmedians::DEFAULT_ITERMAX,
const distance_metric<point> & p_metric = distance_metric_factory<point>::euclidean_square())
{
kmedians_data output_result;
kmedians solver(p_start_medians, kmedians::DEFAULT_TOLERANCE, p_itermax, p_metric);
solver.process(*p_data, output_result);
const dataset & data = *p_data;
const cluster_sequence & actual_clusters = output_result.clusters();
const dataset & medians = output_result.medians();
if (p_itermax == 0) {
ASSERT_TRUE(actual_clusters.empty());
ASSERT_EQ(p_start_medians, medians);
return;
}
ASSERT_EQ(actual_clusters.size(), medians.size());
ASSERT_CLUSTER_SIZES(data, actual_clusters, p_expected_cluster_length);
}
TEST(utest_kmedians, allocation_sample_simple_01) {
dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
std::vector<size_t> expected_clusters_length = { 5, 5 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length);
}
TEST(utest_kmedians, allocation_sample_simple_01_euclidean) {
dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
std::vector<size_t> expected_clusters_length = { 5, 5 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length,
kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::euclidean());
}
TEST(utest_kmedians, allocation_sample_simple_01_euclidean_square) {
dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
std::vector<size_t> expected_clusters_length = { 5, 5 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length,
kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::euclidean_square());
}
TEST(utest_kmedians, allocation_sample_simple_01_manhattan) {
dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
std::vector<size_t> expected_clusters_length = { 5, 5 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length,
kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::manhattan());
}
TEST(utest_kmedians, allocation_sample_simple_01_chebyshev) {
dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
std::vector<size_t> expected_clusters_length = { 5, 5 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length,
kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::chebyshev());
}
TEST(utest_kmedians, allocation_sample_simple_01_minkowski) {
dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
std::vector<size_t> expected_clusters_length = { 5, 5 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length,
kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::minkowski(2.0));
}
TEST(utest_kmedians, allocation_sample_simple_01_user_defined) {
dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
std::vector<size_t> expected_clusters_length = { 5, 5 };
auto user_metric = [](const point & p1, const point & p2) { return euclidean_distance(p1, p2); };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length,
kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::user_defined(user_metric));
}
TEST(utest_kmedians, allocation_sample_simple_02) {
dataset start_medians = { { 3.5, 4.8 }, { 6.9, 7.0 }, { 7.5, 0.5 } };
std::vector<size_t> expected_clusters_length = { 10, 5, 8 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_02), start_medians, expected_clusters_length);
}
TEST(utest_kmedians, allocation_sample_simple_03_hanging) {
dataset start_medians = { { 1.80508 , 4.609467 }, { 0.926445, 0.126412 }, { 0.144706, 0.987019 } };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_03), start_medians, { });
}
TEST(utest_kmedians, allocation_sample_simple_03) {
dataset start_medians = { { 0.2, 0.1 }, { 4.0, 1.0 }, { 2.0, 2.0 }, { 2.3, 3.9 } };
std::vector<size_t> expected_clusters_length = { 10, 10, 10, 30 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_03), start_medians, expected_clusters_length);
}
TEST(utest_kmedians, large_number_medians_sample_simple_01) {
dataset start_medians = { { 1.7, 2.6 }, { 3.7, 4.5 }, { 4.5, 1.6 }, { 6.4, 5.0 }, { 2.2, 2.2 } };
std::vector<size_t> expected_clusters_length; /* pass empty */
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length);
}
TEST(utest_kmedians, large_number_medians_sample_simple_02) {
dataset start_medians = { { -1.5, 0.8 }, { -4.9, 5.0 }, { 2.3, 3.2 }, { -1.2, -0.8 }, { 2.5, 2.9 }, { 6.8, 7.9 } };
std::vector<size_t> expected_clusters_length; /* pass empty */
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_02), start_medians, expected_clusters_length);
}
TEST(utest_kmedians, large_number_medians_sample_simple_03) {
dataset start_medians = { { -8.1, 2.3 }, { -4.9, 5.5 }, { 1.3, 8.3 }, { -2.6, -1.7 }, { 5.3, 4.2 }, { 2.1, 0.0 }, { 1.7, 0.4 } };
std::vector<size_t> expected_clusters_length; /* pass empty */
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_03), start_medians, expected_clusters_length);
}
TEST(utest_kmedians, one_dimension_sample_simple_07) {
dataset start_medians = { { -2.0 }, { 4.0 } };
std::vector<size_t> expected_clusters_length = { 10, 10 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_07), start_medians, expected_clusters_length);
}
TEST(utest_kmedians, one_dimension_sample_simple_08) {
dataset start_medians = { { -4.0 }, { 3.0 }, { 6.0 }, { 10.0 } };
std::vector<size_t> expected_clusters_length = { 15, 30, 20, 80 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_08), start_medians, expected_clusters_length);
}
TEST(utest_kmedians, rough_medians_sample_simple_10) {
dataset start_medians = { { 0.0772944481804071, 0.05224990900863469 }, { 1.6021689021213712, 1.0347579135245601 }, { 2.3341008076636096, 1.280022869739064 } };
std::vector<size_t> expected_clusters_length; /* pass empty */
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_10), start_medians, expected_clusters_length);
}
TEST(utest_kmedians, itermax_0) {
dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
std::vector<size_t> expected_clusters_length = { };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 0);
}
TEST(utest_kmedians, itermax_1) {
dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
std::vector<size_t> expected_clusters_length = { 5, 5 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 1);
}
TEST(utest_kmedians, itermax_10_simple01) {
dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
std::vector<size_t> expected_clusters_length = { 5, 5 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 10);
}
TEST(utest_kmedians, itermax_10_simple02) {
dataset start_medians = { { 3.5, 4.8 }, { 6.9, 7.0 }, { 7.5, 0.5 } };
std::vector<size_t> expected_clusters_length = { 10, 5, 8 };
template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_02), start_medians, expected_clusters_length, 20);
}
|