File: utest-kmedians.cpp

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (179 lines) | stat: -rwxr-xr-x 9,219 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*!

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

*/


#include <gtest/gtest.h>

#include "samples.hpp"

#include <pyclustering/cluster/kmedians.hpp>
#include "utenv_check.hpp"


using namespace pyclustering;
using namespace pyclustering::clst;


static void
template_kmedians_length_process_data(const dataset_ptr & p_data,
                                      const dataset & p_start_medians,
                                      const std::vector<size_t> & p_expected_cluster_length,
                                      const std::size_t p_itermax = kmedians::DEFAULT_ITERMAX,
                                      const distance_metric<point> & p_metric = distance_metric_factory<point>::euclidean_square())
{
    kmedians_data output_result;
    kmedians solver(p_start_medians, kmedians::DEFAULT_TOLERANCE, p_itermax, p_metric);
    solver.process(*p_data, output_result);

    const dataset & data = *p_data;
    const cluster_sequence & actual_clusters = output_result.clusters();
    const dataset & medians = output_result.medians();

    if (p_itermax == 0) {
        ASSERT_TRUE(actual_clusters.empty());
        ASSERT_EQ(p_start_medians, medians);
        return;
    }

    ASSERT_EQ(actual_clusters.size(), medians.size());
    ASSERT_CLUSTER_SIZES(data, actual_clusters, p_expected_cluster_length);
}


TEST(utest_kmedians, allocation_sample_simple_01) {
    dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
    std::vector<size_t> expected_clusters_length = { 5, 5 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length);
}

TEST(utest_kmedians, allocation_sample_simple_01_euclidean) {
    dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
    std::vector<size_t> expected_clusters_length = { 5, 5 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 
        kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::euclidean());
}

TEST(utest_kmedians, allocation_sample_simple_01_euclidean_square) {
    dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
    std::vector<size_t> expected_clusters_length = { 5, 5 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 
        kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::euclidean_square());
}

TEST(utest_kmedians, allocation_sample_simple_01_manhattan) {
    dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
    std::vector<size_t> expected_clusters_length = { 5, 5 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 
        kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::manhattan());
}

TEST(utest_kmedians, allocation_sample_simple_01_chebyshev) {
    dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
    std::vector<size_t> expected_clusters_length = { 5, 5 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 
        kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::chebyshev());
}

TEST(utest_kmedians, allocation_sample_simple_01_minkowski) {
    dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
    std::vector<size_t> expected_clusters_length = { 5, 5 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 
        kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::minkowski(2.0));
}

TEST(utest_kmedians, allocation_sample_simple_01_user_defined) {
    dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
    std::vector<size_t> expected_clusters_length = { 5, 5 };

    auto user_metric = [](const point & p1, const point & p2) { return euclidean_distance(p1, p2); };

    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 
        kmedians::DEFAULT_ITERMAX, distance_metric_factory<point>::user_defined(user_metric));
}

TEST(utest_kmedians, allocation_sample_simple_02) {
    dataset start_medians = { { 3.5, 4.8 }, { 6.9, 7.0 }, { 7.5, 0.5 } };
    std::vector<size_t> expected_clusters_length = { 10, 5, 8 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_02), start_medians, expected_clusters_length);
}

TEST(utest_kmedians, allocation_sample_simple_03_hanging) {
    dataset start_medians = { { 1.80508 , 4.609467 }, { 0.926445, 0.126412 }, { 0.144706, 0.987019 } };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_03), start_medians, { });
}

TEST(utest_kmedians, allocation_sample_simple_03) {
    dataset start_medians = { { 0.2, 0.1 }, { 4.0, 1.0 }, { 2.0, 2.0 }, { 2.3, 3.9 } };
    std::vector<size_t> expected_clusters_length = { 10, 10, 10, 30 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_03), start_medians, expected_clusters_length);
}

TEST(utest_kmedians, large_number_medians_sample_simple_01) {
    dataset start_medians = { { 1.7, 2.6 }, { 3.7, 4.5 }, { 4.5, 1.6 }, { 6.4, 5.0 }, { 2.2, 2.2 } };
    std::vector<size_t> expected_clusters_length;   /* pass empty */
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length);
}

TEST(utest_kmedians, large_number_medians_sample_simple_02) {
    dataset start_medians = { { -1.5, 0.8 }, { -4.9, 5.0 }, { 2.3, 3.2 }, { -1.2, -0.8 }, { 2.5, 2.9 }, { 6.8, 7.9 } };
    std::vector<size_t> expected_clusters_length;   /* pass empty */
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_02), start_medians, expected_clusters_length);
}


TEST(utest_kmedians, large_number_medians_sample_simple_03) {
    dataset start_medians = { { -8.1, 2.3 }, { -4.9, 5.5 }, { 1.3, 8.3 }, { -2.6, -1.7 }, { 5.3, 4.2 }, { 2.1, 0.0 }, { 1.7, 0.4 } };
    std::vector<size_t> expected_clusters_length;   /* pass empty */
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_03), start_medians, expected_clusters_length);
}


TEST(utest_kmedians, one_dimension_sample_simple_07) {
    dataset start_medians = { { -2.0 }, { 4.0 } };
    std::vector<size_t> expected_clusters_length = { 10, 10 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_07), start_medians, expected_clusters_length);
}


TEST(utest_kmedians, one_dimension_sample_simple_08) {
    dataset start_medians = { { -4.0 }, { 3.0 }, { 6.0 }, { 10.0 } };
    std::vector<size_t> expected_clusters_length = { 15, 30, 20, 80 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_08), start_medians, expected_clusters_length);
}


TEST(utest_kmedians, rough_medians_sample_simple_10) {
    dataset start_medians = { { 0.0772944481804071, 0.05224990900863469 }, { 1.6021689021213712, 1.0347579135245601 }, { 2.3341008076636096, 1.280022869739064 } };
    std::vector<size_t> expected_clusters_length;   /* pass empty */
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_10), start_medians, expected_clusters_length);
}


TEST(utest_kmedians, itermax_0) {
    dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
    std::vector<size_t> expected_clusters_length = { };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 0);
}

TEST(utest_kmedians, itermax_1) {
    dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
    std::vector<size_t> expected_clusters_length = { 5, 5 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 1);
}

TEST(utest_kmedians, itermax_10_simple01) {
    dataset start_medians = { { 3.7, 5.5 }, { 6.7, 7.5 } };
    std::vector<size_t> expected_clusters_length = { 5, 5 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_01), start_medians, expected_clusters_length, 10);
}

TEST(utest_kmedians, itermax_10_simple02) {
    dataset start_medians = { { 3.5, 4.8 }, { 6.9, 7.0 }, { 7.5, 0.5 } };
    std::vector<size_t> expected_clusters_length = { 10, 5, 8 };
    template_kmedians_length_process_data(simple_sample_factory::create_sample(SAMPLE_SIMPLE::SAMPLE_SIMPLE_02), start_medians, expected_clusters_length, 20);
}