1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
/*!
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
*/
#include <gtest/gtest.h>
#include "samples.hpp"
#include <pyclustering/cluster/syncnet.hpp>
using namespace pyclustering::clst;
static void template_create_delete(const unsigned int size) {
std::vector<std::vector<double> > sample;
for (unsigned int i = 0; i < size; i++) {
sample.push_back( { 0.0 + (double) i } );
}
syncnet * network = new syncnet(&sample, 2.0, false, initial_type::EQUIPARTITION);
ASSERT_EQ(size, network->size());
delete network;
}
TEST(utest_syncnet, create_delete_network_1) {
template_create_delete(1);
}
TEST(utest_syncnet, create_delete_network_10) {
template_create_delete(10);
}
TEST(utest_syncnet, create_delete_network_100) {
template_create_delete(100);
}
TEST(utest_syncnet, one_cluster) {
bool result_testing = false;
for (std::size_t attempt = 0; attempt < 3; attempt++) {
std::vector<std::vector<double> > sample;
sample.push_back( { 0.1, 0.1 } );
sample.push_back( { 0.2, 0.1 } );
sample.push_back( { 0.0, 0.0 } );
syncnet network(&sample, 0.5, false, initial_type::EQUIPARTITION);
syncnet_analyser analyser;
network.process(0.998, solve_type::FORWARD_EULER, true, analyser);
syncnet_cluster_data clusters;
analyser.allocate_clusters(0.1, clusters);
if (1 != clusters.size()) {
continue;
}
result_testing = true;
}
ASSERT_TRUE(result_testing);
}
static void template_two_cluster_allocation(const solve_type solver, const bool collect_dynamic, const bool ena_conn_weight) {
bool result_testing = false;
for (std::size_t attempt = 0; attempt < 3; attempt++) {
std::vector<std::vector<double> > sample;
sample.push_back( { 0.1, 0.1 } );
sample.push_back( { 0.2, 0.1 } );
sample.push_back( { 0.0, 0.0 } );
sample.push_back( { 2.2, 2.1 } );
sample.push_back( { 2.3, 2.0 } );
sample.push_back( { 2.1, 2.4 } );
syncnet network(&sample, 0.5, ena_conn_weight, initial_type::EQUIPARTITION);
syncnet_analyser analyser;
network.process(0.995, solver, true, analyser);
ensemble_data<syncnet_cluster> ensembles;
analyser.allocate_clusters(0.1, ensembles);
if (2 != ensembles.size()) {
continue;
}
result_testing = true;
}
ASSERT_TRUE(result_testing);
}
TEST(utest_syncnet, two_clusters_fast_solver_with_collection) {
template_two_cluster_allocation(solve_type::FORWARD_EULER, true, false);
}
TEST(utest_syncnet, two_clusters_rk4_solver_with_collection) {
template_two_cluster_allocation(solve_type::RUNGE_KUTTA_4, true, false);
}
TEST(utest_syncnet, two_clusters_rkf45_solver_with_collection) {
template_two_cluster_allocation(solve_type::RUNGE_KUTTA_FEHLBERG_45, true, false);
}
TEST(utest_syncnet, two_clusters_fast_solver_without_collection) {
template_two_cluster_allocation(solve_type::FORWARD_EULER, false, false);
}
TEST(utest_syncnet, two_clusters_rk4_solver_without_collection) {
template_two_cluster_allocation(solve_type::RUNGE_KUTTA_4, false, false);
}
#ifndef VALGRIND_ANALYSIS_SHOCK
TEST(utest_syncnet, two_clusters_rkf45_solver_without_collection) {
template_two_cluster_allocation(solve_type::RUNGE_KUTTA_FEHLBERG_45, false, false);
}
TEST(utest_syncnet, two_clusters_fast_solver_conn_weight) {
template_two_cluster_allocation(solve_type::FORWARD_EULER, false, true);
}
#endif
|