1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*!
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
*/
#include <gtest/gtest.h>
#include <pyclustering/nnet/syncpr.hpp>
#include <algorithm>
using namespace pyclustering::nnet;
static void template_syncpr_create_delete(const unsigned int size) {
syncpr * network = new syncpr(size, 0.5, 0.5);
ASSERT_EQ(size, network->size());
delete network;
}
TEST(utest_syncpr, create_delete_10_oscillators) {
template_syncpr_create_delete(10);
}
TEST(utest_syncpr, create_delete_50_oscillators) {
template_syncpr_create_delete(50);
}
TEST(utest_syncpr, create_delete_100_oscillators) {
template_syncpr_create_delete(100);
}
static void template_simulation_static(const unsigned int steps,
const solve_type solver,
const bool collect_flag) {
syncpr network(5, 0.3, 0.3);
syncpr_dynamic output_dynamic;
syncpr_pattern pattern = { 1, 1, 1, -1, -1 };
network.simulate_static(steps, 10, pattern, solver, collect_flag, output_dynamic);
if (collect_flag) {
ASSERT_TRUE(output_dynamic.size() > steps);
}
else {
ASSERT_EQ(1U, output_dynamic.size());
}
}
TEST(utest_syncpr, static_simulation_10_FAST) {
template_simulation_static(10, solve_type::FORWARD_EULER, true);
}
TEST(utest_syncpr, static_simulation_100_FAST) {
template_simulation_static(100, solve_type::FORWARD_EULER, true);
}
TEST(utest_syncpr, static_simulation_5_RK4) {
template_simulation_static(5, solve_type::RUNGE_KUTTA_4, true);
}
TEST(utest_syncpr, static_simulation_6_RKF45) {
template_simulation_static(6, solve_type::RUNGE_KUTTA_FEHLBERG_45, true);
}
TEST(utest_syncpr, static_simulation_FAST_no_collecting) {
template_simulation_static(5, solve_type::FORWARD_EULER, false);
}
TEST(utest_syncpr, static_simulation_RK4_no_collecting) {
template_simulation_static(5, solve_type::RUNGE_KUTTA_4, false);
}
TEST(utest_syncpr, static_simulation_RKF45_no_collecting) {
template_simulation_static(5, solve_type::RUNGE_KUTTA_FEHLBERG_45, false);
}
static void template_simulation_dynamic(const solve_type solver,
const bool collect_flag) {
syncpr network(5, 0.3, 0.3);
syncpr_dynamic output_dynamic;
syncpr_pattern pattern = { 1, 1, 1, -1, -1 };
network.simulate_dynamic(pattern, 0.95, 1, solver, collect_flag, output_dynamic);
if (collect_flag) {
ASSERT_TRUE(output_dynamic.size() > 1);
}
else {
ASSERT_EQ(1U, output_dynamic.size());
}
}
TEST(utest_syncpr, dynamic_simulation_FAST) {
template_simulation_dynamic(solve_type::FORWARD_EULER, true);
}
TEST(utest_syncpr, dynamic_simulation_RK4) {
template_simulation_dynamic(solve_type::RUNGE_KUTTA_4, true);
}
#ifndef VALGRIND_ANALYSIS_SHOCK
TEST(utest_syncpr, dynamic_simulation_RKF45) {
template_simulation_dynamic(solve_type::RUNGE_KUTTA_FEHLBERG_45, true);
}
#endif
TEST(utest_syncpr, dynamic_simulation_FAST_no_collecting) {
template_simulation_dynamic(solve_type::FORWARD_EULER, false);
}
TEST(utest_syncpr, dynamic_simulation_RK4_no_collecting) {
template_simulation_dynamic(solve_type::RUNGE_KUTTA_4, false);
}
#ifndef VALGRIND_ANALYSIS_SHOCK
TEST(utest_syncpr, dynamic_simulation_RKF45_no_collecting) {
template_simulation_dynamic(solve_type::RUNGE_KUTTA_FEHLBERG_45, false);
}
#endif
TEST(utest_syncpr, train_and_recognize_pattern) {
syncpr network(10, 0.1, 0.1);
syncpr_dynamic output_dynamic;
std::vector<syncpr_pattern> patterns = {
{ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 },
{ -1, -1, -1, -1, -1, 1, 1, 1, 1, 1 }
};
double memory_order1 = network.memory_order(patterns[0]);
double memory_order2 = network.memory_order(patterns[1]);
ASSERT_TRUE(memory_order1 < 0.9);
ASSERT_TRUE(memory_order2 < 0.9);
network.train(patterns);
/* recognize it */
for (size_t i = 0; i < patterns.size(); i++) {
syncpr_dynamic output_dynamic;
network.simulate_static(20, 10, patterns[i], solve_type::RUNGE_KUTTA_4, true, output_dynamic);
double memory_order = network.memory_order(patterns[i]);
ASSERT_TRUE(memory_order > 0.995);
ensemble_data<sync_ensemble> sync_ensembles;
output_dynamic.allocate_sync_ensembles(0.1, sync_ensembles);
ASSERT_EQ(2U, sync_ensembles.size());
for (sync_ensemble & ensemble : sync_ensembles) {
std::sort(ensemble.begin(), ensemble.end());
}
sync_ensemble expected_ensemble1 = { 0, 1, 2, 3, 4 };
sync_ensemble expected_ensemble2 = { 5, 6, 7, 8, 9 };
ASSERT_TRUE( (expected_ensemble1 == sync_ensembles[0]) || (expected_ensemble2 == sync_ensembles[0]) );
ASSERT_TRUE( (expected_ensemble1 == sync_ensembles[1]) || (expected_ensemble2 == sync_ensembles[1]));
}
}
TEST(utest_syncpr, sync_local_order) {
syncpr network(10, 0.1, 0.1);
double local_order = network.sync_local_order();
ASSERT_TRUE((local_order > 0.0) && (local_order < 1.0));
std::vector<syncpr_pattern> patterns = {
{ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 },
{ -1, -1, -1, -1, -1, 1, 1, 1, 1, 1 }
};
network.train(patterns);
local_order = network.sync_local_order();
ASSERT_TRUE((local_order > 0.0) && (local_order < 1.0));
}
TEST(utest_syncpr, sync_global_order) {
syncpr network(10, 0.1, 0.1);
double global_order = network.sync_order();
ASSERT_TRUE((global_order > 0.0) && (global_order < 1.0));
std::vector<syncpr_pattern> patterns = {
{ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 },
{ -1, -1, -1, -1, -1, 1, 1, 1, 1, 1 }
};
network.train(patterns);
global_order = network.sync_order();
ASSERT_TRUE((global_order > 0.0) && (global_order < 1.0));
}
|