1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
/*!
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
*/
#include <gtest/gtest.h>
#include <pyclustering/definitions.hpp>
#include <pyclustering/utils/metric.hpp>
#include "utenv_check.hpp"
using namespace pyclustering;
using namespace pyclustering::utils::metric;
TEST(utest_metric, metric_factory_euclidean) {
distance_metric<point> metric = distance_metric_factory<point>::euclidean();
ASSERT_EQ(1.0, metric({0.0, 0.0}, {1.0, 0.0}));
ASSERT_EQ(3.0, metric({-1.0, -2.0}, {-1.0, -5.0}));
}
TEST(utest_metric, metric_factory_euclidean_square) {
distance_metric<point> metric = distance_metric_factory<point>::euclidean_square();
ASSERT_EQ(1.0, metric({0.0, 0.0}, {1.0, 0.0}));
ASSERT_EQ(9.0, metric({-1.0, -2.0}, {-1.0, -5.0}));
}
TEST(utest_metric, metric_factory_manhattan) {
distance_metric<point> metric = distance_metric_factory<point>::manhattan();
ASSERT_EQ(1.0, metric({0.0, 0.0}, {1.0, 0.0}));
ASSERT_EQ(3.0, metric({0.0, 0.0}, {1.0, 2.0}));
}
TEST(utest_metric, metric_factory_chebyshev) {
distance_metric<point> metric = distance_metric_factory<point>::chebyshev();
ASSERT_EQ(1.0, metric({0.0, 0.0}, {1.0, 0.0}));
ASSERT_EQ(2.0, metric({0.0, 0.0}, {1.0, 2.0}));
}
TEST(utest_metric, metric_factory_minkowski) {
distance_metric<point> metric = distance_metric_factory<point>::minkowski(2);
ASSERT_EQ(1.0, metric({0.0, 0.0}, {1.0, 0.0}));
ASSERT_EQ(3.0, metric({-1.0, -2.0}, {-1.0, -5.0}));
}
TEST(utest_metric, metric_factory_canberra) {
distance_metric<point> metric = distance_metric_factory<point>::canberra();
ASSERT_EQ(0.0, metric({0.0, 0.0}, {0.0, 0.0}));
ASSERT_EQ(2.0, metric({0.0, 0.0}, {1.0, 1.0}));
ASSERT_EQ(1.0, metric({0.75, 0.75}, {0.25, 0.25}));
}
TEST(utest_metric, metric_factory_cchi_square) {
distance_metric<point> metric = distance_metric_factory<point>::chi_square();
ASSERT_EQ(0.0, metric({0.0, 0.0}, {0.0, 0.0}));
ASSERT_EQ(2.0, metric({0.0, 0.0}, {1.0, 1.0}));
ASSERT_EQ(0.5, metric({0.75, 0.75}, {0.25, 0.25}));
}
TEST(utest_metric, metric_factory_gower) {
distance_metric<point> metric = distance_metric_factory<point>::gower({0.0, 0.0});
ASSERT_EQ(0.0, metric({0.0, 0.0}, {0.0, 0.0}));
metric = distance_metric_factory<point>::gower({1.0, 1.0});
ASSERT_EQ(1.0, metric({1.0, 1.0}, {2.0, 2.0}));
metric = distance_metric_factory<point>::gower({0.5, 0.5});
ASSERT_EQ(1.0, metric({0.75, 0.75}, {0.25, 0.25}));
}
TEST(utest_metric, metric_factory_user_defined) {
distance_metric<point> metric = distance_metric_factory<point>::user_defined([](const point & p1, const point & p2) { return -5.0; } );
ASSERT_EQ(-5.0, metric({0.0, 0.0}, {1.0, 0.0}));
ASSERT_EQ(-5.0, metric({0.0, 0.0}, {0.0, 0.0}));
}
TEST(utest_metric, calculate_distance_matrix_01) {
dataset points = { {0}, {2}, {4} };
dataset distance_matrix;
pyclustering::utils::metric::distance_matrix(points, distance_matrix);
dataset distance_matrix_expected = { { 0.0, 2.0, 4.0 }, { 2.0, 0.0, 2.0 }, { 4.0, 2.0, 0.0 } };
ASSERT_EQ(distance_matrix, distance_matrix_expected);
}
|