File: utest-utils-metric.cpp

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (92 lines) | stat: -rwxr-xr-x 3,146 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/*!

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

*/


#include <gtest/gtest.h>

#include <pyclustering/definitions.hpp>

#include <pyclustering/utils/metric.hpp>

#include "utenv_check.hpp"


using namespace pyclustering;
using namespace pyclustering::utils::metric;


TEST(utest_metric, metric_factory_euclidean) {
   distance_metric<point> metric = distance_metric_factory<point>::euclidean();
   ASSERT_EQ(1.0, metric({0.0, 0.0}, {1.0, 0.0}));
   ASSERT_EQ(3.0, metric({-1.0, -2.0}, {-1.0, -5.0}));
}

TEST(utest_metric, metric_factory_euclidean_square) {
   distance_metric<point> metric = distance_metric_factory<point>::euclidean_square();
   ASSERT_EQ(1.0, metric({0.0, 0.0}, {1.0, 0.0}));
   ASSERT_EQ(9.0, metric({-1.0, -2.0}, {-1.0, -5.0}));
}

TEST(utest_metric, metric_factory_manhattan) {
   distance_metric<point> metric = distance_metric_factory<point>::manhattan();
   ASSERT_EQ(1.0, metric({0.0, 0.0}, {1.0, 0.0}));
   ASSERT_EQ(3.0, metric({0.0, 0.0}, {1.0, 2.0}));
}

TEST(utest_metric, metric_factory_chebyshev) {
   distance_metric<point> metric = distance_metric_factory<point>::chebyshev();
   ASSERT_EQ(1.0, metric({0.0, 0.0}, {1.0, 0.0}));
   ASSERT_EQ(2.0, metric({0.0, 0.0}, {1.0, 2.0}));
}

TEST(utest_metric, metric_factory_minkowski) {
   distance_metric<point> metric = distance_metric_factory<point>::minkowski(2);
   ASSERT_EQ(1.0, metric({0.0, 0.0}, {1.0, 0.0}));
   ASSERT_EQ(3.0, metric({-1.0, -2.0}, {-1.0, -5.0}));
}

TEST(utest_metric, metric_factory_canberra) {
   distance_metric<point> metric = distance_metric_factory<point>::canberra();
   ASSERT_EQ(0.0, metric({0.0, 0.0}, {0.0, 0.0}));
   ASSERT_EQ(2.0, metric({0.0, 0.0}, {1.0, 1.0}));
   ASSERT_EQ(1.0, metric({0.75, 0.75}, {0.25, 0.25}));
}

TEST(utest_metric, metric_factory_cchi_square) {
   distance_metric<point> metric = distance_metric_factory<point>::chi_square();
   ASSERT_EQ(0.0, metric({0.0, 0.0}, {0.0, 0.0}));
   ASSERT_EQ(2.0, metric({0.0, 0.0}, {1.0, 1.0}));
   ASSERT_EQ(0.5, metric({0.75, 0.75}, {0.25, 0.25}));
}

TEST(utest_metric, metric_factory_gower) {
   distance_metric<point> metric = distance_metric_factory<point>::gower({0.0, 0.0});
   ASSERT_EQ(0.0, metric({0.0, 0.0}, {0.0, 0.0}));
   metric = distance_metric_factory<point>::gower({1.0, 1.0});
   ASSERT_EQ(1.0, metric({1.0, 1.0}, {2.0, 2.0}));
   metric = distance_metric_factory<point>::gower({0.5, 0.5});
   ASSERT_EQ(1.0, metric({0.75, 0.75}, {0.25, 0.25}));
}

TEST(utest_metric, metric_factory_user_defined) {
   distance_metric<point> metric = distance_metric_factory<point>::user_defined([](const point & p1, const point & p2) { return -5.0; } );
   ASSERT_EQ(-5.0, metric({0.0, 0.0}, {1.0, 0.0}));
   ASSERT_EQ(-5.0, metric({0.0, 0.0}, {0.0, 0.0}));
}


TEST(utest_metric, calculate_distance_matrix_01) {
    dataset points = { {0}, {2}, {4} };
    dataset distance_matrix;

    pyclustering::utils::metric::distance_matrix(points, distance_matrix);

    dataset distance_matrix_expected = { { 0.0, 2.0, 4.0 }, { 2.0, 0.0, 2.0 }, { 4.0, 2.0, 0.0 } };

    ASSERT_EQ(distance_matrix, distance_matrix_expected);
}