1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
|
"""!
@brief pyclustering module for cluster analysis.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import itertools
import math
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from pyclustering.utils.color import color as color_list
class canvas_cluster_descr:
"""!
@brief Description of cluster for representation on canvas.
"""
def __init__(self, cluster, data, marker, markersize, color):
"""!
@brief Constructor of cluster representation on the canvas.
@param[in] cluster (list): Single cluster that consists of objects or indexes from data.
@param[in] data (list): Objects that should be displayed, can be None if clusters consist of objects instead of indexes.
@param[in] marker (string): Type of marker that is used for drawing objects.
@param[in] markersize (uint): Size of marker that is used for drawing objects.
@param[in] color (string): Color of the marker that is used for drawing objects.
"""
## Cluster that may consist of objects or indexes of objects from data.
self.cluster = cluster
## Data where objects are stored. It can be None if clusters consist of objects instead of indexes.
self.data = data
## Marker that is used for drawing objects.
self.marker = marker
## Size of marker that is used for drawing objects.
self.markersize = markersize
## Color that is used for coloring marker.
self.color = color
## Attribures of the clusters - additional collections of data points that are regarded to the cluster.
self.attributes = []
class cluster_visualizer_multidim:
"""!
@brief Visualizer for cluster in multi-dimensional data.
@details This cluster visualizer is useful for clusters in data whose dimension is greater than 3. The
multidimensional visualizer helps to overcome 'cluster_visualizer' shortcoming - ability to display
clusters in 1D, 2D or 3D dimensional data space.
Example of clustering results visualization where 'Iris' is used:
@code
from pyclustering.utils import read_sample
from pyclustering.samples.definitions import FAMOUS_SAMPLES
from pyclustering.cluster import cluster_visualizer_multidim
# load 4D data sample 'Iris'
sample_4d = read_sample(FAMOUS_SAMPLES.SAMPLE_IRIS)
# initialize 3 initial centers using K-Means++ algorithm
centers = kmeans_plusplus_initializer(sample_4d, 3).initialize()
# performs cluster analysis using X-Means
xmeans_instance = xmeans(sample_4d, centers)
xmeans_instance.process()
clusters = xmeans_instance.get_clusters()
# visualize obtained clusters in multi-dimensional space
visualizer = cluster_visualizer_multidim()
visualizer.append_clusters(clusters, sample_4d)
visualizer.show(max_row_size=3)
@endcode
Visualized clustering results of 'Iris' data (multi-dimensional data):
@image html xmeans_clustering_famous_iris.png "Fig. 1. X-Means clustering results (data 'Iris')."
Sometimes no need to display results in all dimensions. Parameter 'filter' can be used to display only
interesting coordinate pairs. Here is an example of visualization of pair coordinates (x0, x1) and (x0, x2) for
previous clustering results:
@code
visualizer = cluster_visualizer_multidim()
visualizer.append_clusters(clusters, sample_4d)
visualizer.show(pair_filter=[[0, 1], [0, 2]])
@endcode
Visualized results of specified coordinate pairs:
@image html xmeans_clustering_famous_iris_filtered.png "Fig. 2. X-Means clustering results (x0, x1) and (x0, x2) (data 'Iris')."
"""
def __init__(self):
"""!
@brief Constructs cluster visualizer for multidimensional data.
@details The visualizer is suitable more data whose dimension is bigger than 3.
"""
self.__clusters = []
self.__figure = None
self.__grid_spec = None
def append_cluster(self, cluster, data = None, marker = '.', markersize = None, color = None):
"""!
@brief Appends cluster for visualization.
@param[in] cluster (list): cluster that may consist of indexes of objects from the data or object itself.
@param[in] data (list): If defines that each element of cluster is considered as a index of object from the data.
@param[in] marker (string): Marker that is used for displaying objects from cluster on the canvas.
@param[in] markersize (uint): Size of marker.
@param[in] color (string): Color of marker.
@return Returns index of cluster descriptor on the canvas.
"""
if len(cluster) == 0:
raise ValueError("Empty cluster is provided.")
markersize = markersize or 5
if color is None:
index_color = len(self.__clusters) % len(color_list.TITLES)
color = color_list.TITLES[index_color]
cluster_descriptor = canvas_cluster_descr(cluster, data, marker, markersize, color)
self.__clusters.append(cluster_descriptor)
def append_clusters(self, clusters, data=None, marker='.', markersize=None):
"""!
@brief Appends list of cluster for visualization.
@param[in] clusters (list): List of clusters where each cluster may consist of indexes of objects from the data or object itself.
@param[in] data (list): If defines that each element of cluster is considered as a index of object from the data.
@param[in] marker (string): Marker that is used for displaying objects from clusters on the canvas.
@param[in] markersize (uint): Size of marker.
"""
for cluster in clusters:
self.append_cluster(cluster, data, marker, markersize)
def save(self, filename, **kwargs):
"""!
@brief Saves figure to the specified file.
@param[in] filename (string): File where the visualized clusters should be stored.
@param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'visible_axis' 'visible_labels', 'visible_grid', 'row_size', 'show').
<b>Keyword Args:</b><br>
- visible_axis (bool): Defines visibility of axes on each canvas, if True - axes are visible.
By default axis of each canvas are not displayed.
- visible_labels (bool): Defines visibility of labels on each canvas, if True - labels is displayed.
By default labels of each canvas are displayed.
- visible_grid (bool): Defines visibility of grid on each canvas, if True - grid is displayed.
By default grid of each canvas is displayed.
- max_row_size (uint): Maximum number of canvases on one row.
"""
if len(filename) == 0:
raise ValueError("Impossible to save visualization to file: empty file path is specified.")
self.show(None,
visible_axis=kwargs.get('visible_axis', False),
visible_labels=kwargs.get('visible_labels', True),
visible_grid=kwargs.get('visible_grid', True),
max_row_size=kwargs.get('max_row_size', 4))
plt.savefig(filename)
def show(self, pair_filter=None, **kwargs):
"""!
@brief Shows clusters (visualize) in multi-dimensional space.
@param[in] pair_filter (list): List of coordinate pairs that should be displayed. This argument is used as a filter.
@param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'visible_axis' 'visible_labels', 'visible_grid', 'row_size', 'show').
<b>Keyword Args:</b><br>
- visible_axis (bool): Defines visibility of axes on each canvas, if True - axes are visible.
By default axis of each canvas are not displayed.
- visible_labels (bool): Defines visibility of labels on each canvas, if True - labels is displayed.
By default labels of each canvas are displayed.
- visible_grid (bool): Defines visibility of grid on each canvas, if True - grid is displayed.
By default grid of each canvas is displayed.
- max_row_size (uint): Maximum number of canvases on one row. By default the maximum value is 4.
- show (bool): If True - then displays visualized clusters. By default is `True`.
"""
if not len(self.__clusters) > 0:
raise ValueError("There is no non-empty clusters for visualization.")
cluster_data = self.__clusters[0].data or self.__clusters[0].cluster
dimension = len(cluster_data[0])
acceptable_pairs = pair_filter or []
pairs = []
amount_axis = 1
axis_storage = []
if dimension > 1:
pairs = self.__create_pairs(dimension, acceptable_pairs)
amount_axis = len(pairs)
self.__figure = plt.figure()
self.__grid_spec = self.__create_grid_spec(amount_axis, kwargs.get('max_row_size', 4))
for index in range(amount_axis):
ax = self.__create_canvas(dimension, pairs, index, **kwargs)
axis_storage.append(ax)
for cluster_descr in self.__clusters:
self.__draw_canvas_cluster(axis_storage, cluster_descr, pairs)
if kwargs.get('show', True):
plt.show()
def __create_grid_spec(self, amount_axis, max_row_size):
"""!
@brief Create grid specification for figure to place canvases.
@param[in] amount_axis (uint): Amount of canvases that should be organized by the created grid specification.
@param[in] max_row_size (max_row_size): Maximum number of canvases on one row.
@return (gridspec.GridSpec) Grid specification to place canvases on figure.
"""
row_size = amount_axis
if row_size > max_row_size:
row_size = max_row_size
col_size = math.ceil(amount_axis / row_size)
return gridspec.GridSpec(col_size, row_size)
def __create_pairs(self, dimension, acceptable_pairs):
"""!
@brief Create coordinate pairs that should be displayed.
@param[in] dimension (uint): Data-space dimension.
@param[in] acceptable_pairs (list): List of coordinate pairs that should be displayed.
@return (list) List of coordinate pairs that should be displayed.
"""
if len(acceptable_pairs) > 0:
return acceptable_pairs
return list(itertools.combinations(range(dimension), 2))
def __create_canvas(self, dimension, pairs, position, **kwargs):
"""!
@brief Create new canvas with user defined parameters to display cluster or chunk of cluster on it.
@param[in] dimension (uint): Data-space dimension.
@param[in] pairs (list): Pair of coordinates that will be displayed on the canvas. If empty than label will not
be displayed on the canvas.
@param[in] position (uint): Index position of canvas on a grid.
@param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'visible_axis' 'visible_labels', 'visible_grid').
<b>Keyword Args:</b><br>
- visible_axis (bool): Defines visibility of axes on each canvas, if True - axes are visible.
By default axis are not displayed.
- visible_labels (bool): Defines visibility of labels on each canvas, if True - labels is displayed.
By default labels are displayed.
- visible_grid (bool): Defines visibility of grid on each canvas, if True - grid is displayed.
By default grid is displayed.
@return (matplotlib.Axis) Canvas to display cluster of chuck of cluster.
"""
visible_grid = kwargs.get('visible_grid', True)
visible_labels = kwargs.get('visible_labels', True)
visible_axis = kwargs.get('visible_axis', False)
ax = self.__figure.add_subplot(self.__grid_spec[position])
if dimension > 1:
if visible_labels:
ax.set_xlabel("x%d" % pairs[position][0])
ax.set_ylabel("x%d" % pairs[position][1])
else:
ax.set_ylim(-0.5, 0.5)
ax.set_yticklabels([])
if visible_grid:
ax.grid(True)
if not visible_axis:
ax.set_yticklabels([])
ax.set_xticklabels([])
return ax
def __draw_canvas_cluster(self, axis_storage, cluster_descr, pairs):
"""!
@brief Draw clusters.
@param[in] axis_storage (list): List of matplotlib axis where cluster dimensional chunks are displayed.
@param[in] cluster_descr (canvas_cluster_descr): Canvas cluster descriptor that should be displayed.
@param[in] pairs (list): List of coordinates that should be displayed.
"""
for index_axis in range(len(axis_storage)):
for item in cluster_descr.cluster:
if len(pairs) > 0:
self.__draw_cluster_item_multi_dimension(axis_storage[index_axis], pairs[index_axis], item, cluster_descr)
else:
self.__draw_cluster_item_one_dimension(axis_storage[index_axis], item, cluster_descr)
def __draw_cluster_item_multi_dimension(self, ax, pair, item, cluster_descr):
"""!
@brief Draw cluster chunk defined by pair coordinates in data space with dimension greater than 1.
@param[in] ax (axis): Matplotlib axis that is used to display chunk of cluster point.
@param[in] pair (list): Coordinate of the point that should be displayed.
@param[in] item (list): Data point or index of data point.
@param[in] cluster_descr (canvas_cluster_descr): Cluster description whose point is visualized.
"""
index_dimension1 = pair[0]
index_dimension2 = pair[1]
if cluster_descr.data is None:
ax.plot(item[index_dimension1], item[index_dimension2],
color=cluster_descr.color, marker=cluster_descr.marker, markersize=cluster_descr.markersize)
else:
ax.plot(cluster_descr.data[item][index_dimension1], cluster_descr.data[item][index_dimension2],
color=cluster_descr.color, marker=cluster_descr.marker, markersize=cluster_descr.markersize)
def __draw_cluster_item_one_dimension(self, ax, item, cluster_descr):
"""!
@brief Draw cluster point in one dimensional data space..
@param[in] ax (axis): Matplotlib axis that is used to display chunk of cluster point.
@param[in] item (list): Data point or index of data point.
@param[in] cluster_descr (canvas_cluster_descr): Cluster description whose point is visualized.
"""
if cluster_descr.data is None:
ax.plot(item[0], 0.0,
color=cluster_descr.color, marker=cluster_descr.marker, markersize=cluster_descr.markersize)
else:
ax.plot(cluster_descr.data[item][0], 0.0,
color=cluster_descr.color, marker=cluster_descr.marker, markersize=cluster_descr.markersize)
class cluster_visualizer:
"""!
@brief Common visualizer of clusters on 1D, 2D or 3D surface.
@details Use 'cluster_visualizer_multidim' visualizer in case of data dimension is greater than 3.
@see cluster_visualizer_multidim
"""
def __init__(self, number_canvases=1, size_row=1, titles=None):
"""!
@brief Constructor of cluster visualizer.
@param[in] number_canvases (uint): Number of canvases that is used for visualization.
@param[in] size_row (uint): Amount of canvases that can be placed in one row.
@param[in] titles (list): List of canvas's titles.
Example:
@code
# load 2D data sample
sample_2d = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1);
# load 3D data sample
sample_3d = read_sample(FCPS_SAMPLES.SAMPLE_HEPTA);
# extract clusters from the first sample using DBSCAN algorithm
dbscan_instance = dbscan(sample_2d, 0.4, 2, False);
dbscan_instance.process();
clusters_sample_2d = dbscan_instance.get_clusters();
# extract clusters from the second sample using DBSCAN algorithm
dbscan_instance = dbscan(sample_3d, 1, 3, True);
dbscan_instance.process();
clusters_sample_3d = dbscan_instance.get_clusters();
# create plot with two canvases where each row contains 2 canvases.
size = 2;
row_size = 2;
visualizer = cluster_visualizer(size, row_size);
# place clustering result of sample_2d to the first canvas
visualizer.append_clusters(clusters_sample_2d, sample_2d, 0, markersize = 5);
# place clustering result of sample_3d to the second canvas
visualizer.append_clusters(clusters_sample_3d, sample_3d, 1, markersize = 30);
# show plot
visualizer.show();
@endcode
"""
self.__number_canvases = number_canvases
self.__size_row = size_row
self.__canvas_clusters = [ [] for _ in range(number_canvases) ]
self.__canvas_dimensions = [ None for _ in range(number_canvases) ]
self.__canvas_titles = [ None for _ in range(number_canvases) ]
if titles is not None:
self.__canvas_titles = titles
self.__default_2d_marker_size = 5
self.__default_3d_marker_size = 30
def append_cluster(self, cluster, data=None, canvas=0, marker='.', markersize=None, color=None):
"""!
@brief Appends cluster to canvas for drawing.
@param[in] cluster (list): cluster that may consist of indexes of objects from the data or object itself.
@param[in] data (list): If defines that each element of cluster is considered as a index of object from the data.
@param[in] canvas (uint): Number of canvas that should be used for displaying cluster.
@param[in] marker (string): Marker that is used for displaying objects from cluster on the canvas.
@param[in] markersize (uint): Size of marker.
@param[in] color (string): Color of marker.
@return Returns index of cluster descriptor on the canvas.
"""
if len(cluster) == 0:
return
if canvas > self.__number_canvases or canvas < 0:
raise ValueError("Canvas index '%d' is out of range [0; %d]." % self.__number_canvases or canvas)
if color is None:
index_color = len(self.__canvas_clusters[canvas]) % len(color_list.TITLES)
color = color_list.TITLES[index_color]
added_canvas_descriptor = canvas_cluster_descr(cluster, data, marker, markersize, color)
self.__canvas_clusters[canvas].append(added_canvas_descriptor)
if data is None:
dimension = len(cluster[0])
if self.__canvas_dimensions[canvas] is None:
self.__canvas_dimensions[canvas] = dimension
elif self.__canvas_dimensions[canvas] != dimension:
raise ValueError("Only clusters with the same dimension of objects can be displayed on canvas.")
else:
dimension = len(data[0])
if self.__canvas_dimensions[canvas] is None:
self.__canvas_dimensions[canvas] = dimension
elif self.__canvas_dimensions[canvas] != dimension:
raise ValueError("Only clusters with the same dimension of objects can be displayed on canvas.")
if (dimension < 1) or (dimension > 3):
raise ValueError("Only objects with size dimension 1 (1D plot), 2 (2D plot) or 3 (3D plot) "
"can be displayed. For multi-dimensional data use 'cluster_visualizer_multidim'.")
if markersize is None:
if (dimension == 1) or (dimension == 2):
added_canvas_descriptor.markersize = self.__default_2d_marker_size
elif dimension == 3:
added_canvas_descriptor.markersize = self.__default_3d_marker_size
return len(self.__canvas_clusters[canvas]) - 1
def append_cluster_attribute(self, index_canvas, index_cluster, data, marker = None, markersize = None):
"""!
@brief Append cluster attribure for cluster on specific canvas.
@details Attribute it is data that is visualized for specific cluster using its color, marker and markersize if last two is not specified.
@param[in] index_canvas (uint): Index canvas where cluster is located.
@param[in] index_cluster (uint): Index cluster whose attribute should be added.
@param[in] data (list): List of points (data) that represents attribute.
@param[in] marker (string): Marker that is used for displaying objects from cluster on the canvas.
@param[in] markersize (uint): Size of marker.
"""
cluster_descr = self.__canvas_clusters[index_canvas][index_cluster]
attribute_marker = marker
if attribute_marker is None:
attribute_marker = cluster_descr.marker
attribure_markersize = markersize
if attribure_markersize is None:
attribure_markersize = cluster_descr.markersize
attribute_color = cluster_descr.color
added_attribute_cluster_descriptor = canvas_cluster_descr(data, None, attribute_marker, attribure_markersize, attribute_color)
self.__canvas_clusters[index_canvas][index_cluster].attributes.append(added_attribute_cluster_descriptor)
def append_clusters(self, clusters, data=None, canvas=0, marker='.', markersize=None):
"""!
@brief Appends list of cluster to canvas for drawing.
@param[in] clusters (list): List of clusters where each cluster may consist of indexes of objects from the data or object itself.
@param[in] data (list): If defines that each element of cluster is considered as a index of object from the data.
@param[in] canvas (uint): Number of canvas that should be used for displaying clusters.
@param[in] marker (string): Marker that is used for displaying objects from clusters on the canvas.
@param[in] markersize (uint): Size of marker.
"""
for cluster in clusters:
self.append_cluster(cluster, data, canvas, marker, markersize)
def set_canvas_title(self, text, canvas = 0):
"""!
@brief Set title for specified canvas.
@param[in] text (string): Title for the canvas.
@param[in] canvas (uint): Index of the canvas where title should be displayed.
"""
if canvas > self.__number_canvases:
raise ValueError("Canvas with index '%d' does not exists (total amount of canvases: '%d')." %
canvas, self.__number_canvases)
self.__canvas_titles[canvas] = text
def get_cluster_color(self, index_cluster, index_canvas):
"""!
@brief Returns cluster color on specified canvas.
"""
return self.__canvas_clusters[index_canvas][index_cluster].color
def save(self, filename, **kwargs):
"""!
@brief Saves figure to the specified file.
@param[in] filename (string): File where the visualized clusters should be stored.
@param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'invisible_axis', 'visible_grid').
<b>Keyword Args:</b><br>
- invisible_axis (bool): Defines visibility of axes on each canvas, if `True` - axes are invisible.
By default axis are invisible.
- visible_grid (bool): Defines visibility of grid on each canvas, if `True` - grid is displayed.
By default grid of each canvas is displayed.
There is an example how to save visualized clusters to the PNG file without showing them on a screen:
@code
from pyclustering.cluster import cluster_visualizer
data = [[1.1], [1.7], [3.7], [5.3], [2.5], [-1.5], [-0.9], [6.3], [6.5], [8.1]]
clusters = [[0, 1, 2, 4, 5, 6], [3, 7, 8, 9]]
visualizer = cluster_visualizer()
visualizer.append_clusters(clusters, data)
visualizer.save("1-dimensional-clustering.png")
@endcode
"""
if len(filename) == 0:
raise ValueError("Impossible to save visualization to file: empty file path is specified.")
invisible_axis = kwargs.get('invisible_axis', True)
visible_grid = kwargs.get('visible_grid', True)
self.show(None, invisible_axis, visible_grid, False)
plt.savefig(filename)
def show(self, figure=None, invisible_axis=True, visible_grid=True, display=True, shift=None):
"""!
@brief Shows clusters (visualize).
@param[in] figure (fig): Defines requirement to use specified figure, if None - new figure is created for drawing clusters.
@param[in] invisible_axis (bool): Defines visibility of axes on each canvas, if True - axes are invisible.
@param[in] visible_grid (bool): Defines visibility of grid on each canvas, if True - grid is displayed.
@param[in] display (bool): Defines requirement to display clusters on a stage, if True - clusters are displayed,
if False - plt.show() should be called by user."
@param[in] shift (uint): Force canvas shift value - defines canvas index from which custers should be visualized.
@return (fig) Figure where clusters are shown.
"""
canvas_shift = shift
if canvas_shift is None:
if figure is not None:
canvas_shift = len(figure.get_axes())
else:
canvas_shift = 0
if figure is not None:
cluster_figure = figure
else:
cluster_figure = plt.figure()
maximum_cols = self.__size_row
maximum_rows = math.ceil( (self.__number_canvases + canvas_shift) / maximum_cols)
grid_spec = gridspec.GridSpec(maximum_rows, maximum_cols)
for index_canvas in range(len(self.__canvas_clusters)):
canvas_data = self.__canvas_clusters[index_canvas]
if len(canvas_data) == 0:
continue
dimension = self.__canvas_dimensions[index_canvas]
#ax = axes[real_index];
if (dimension == 1) or (dimension == 2):
ax = cluster_figure.add_subplot(grid_spec[index_canvas + canvas_shift])
else:
ax = cluster_figure.add_subplot(grid_spec[index_canvas + canvas_shift], projection='3d')
if len(canvas_data) == 0:
plt.setp(ax, visible=False)
for cluster_descr in canvas_data:
self.__draw_canvas_cluster(ax, dimension, cluster_descr)
for attribute_descr in cluster_descr.attributes:
self.__draw_canvas_cluster(ax, dimension, attribute_descr)
if invisible_axis is True:
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
if dimension == 3:
ax.zaxis.set_ticklabels([])
if self.__canvas_titles[index_canvas] is not None:
ax.set_title(self.__canvas_titles[index_canvas])
ax.grid(visible_grid)
if display is True:
plt.show()
return cluster_figure
def __draw_canvas_cluster(self, ax, dimension, cluster_descr):
"""!
@brief Draw canvas cluster descriptor.
@param[in] ax (Axis): Axis of the canvas where canvas cluster descriptor should be displayed.
@param[in] dimension (uint): Canvas dimension.
@param[in] cluster_descr (canvas_cluster_descr): Canvas cluster descriptor that should be displayed.
@return (fig) Figure where clusters are shown.
"""
cluster = cluster_descr.cluster
data = cluster_descr.data
marker = cluster_descr.marker
markersize = cluster_descr.markersize
color = cluster_descr.color
for item in cluster:
if dimension == 1:
if data is None:
ax.plot(item[0], 0.0, color = color, marker = marker, markersize = markersize)
else:
ax.plot(data[item][0], 0.0, color = color, marker = marker, markersize = markersize)
elif dimension == 2:
if data is None:
ax.plot(item[0], item[1], color = color, marker = marker, markersize = markersize)
else:
ax.plot(data[item][0], data[item][1], color = color, marker = marker, markersize = markersize)
elif dimension == 3:
if data is None:
ax.scatter(item[0], item[1], item[2], c = color, marker = marker, s = markersize)
else:
ax.scatter(data[item][0], data[item][1], data[item][2], c = color, marker = marker, s = markersize)
|