1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
"""!
@brief Cluster analysis algorithm: BSAS (Basic Sequential Algorithmic Scheme).
@details Implementation based on paper @cite book::pattern_recognition::2009.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
from pyclustering.core.wrapper import ccore_library
from pyclustering.core.bsas_wrapper import bsas as bsas_wrapper
from pyclustering.core.metric_wrapper import metric_wrapper
from pyclustering.cluster import cluster_visualizer
from pyclustering.cluster.encoder import type_encoding
from pyclustering.utils.metric import type_metric, distance_metric
class bsas_visualizer:
"""!
@brief Visualizer of BSAS algorithm's results.
@details BSAS visualizer provides visualization services that are specific for BSAS algorithm.
"""
@staticmethod
def show_clusters(sample, clusters, representatives, **kwargs):
"""!
@brief Display BSAS clustering results.
@param[in] sample (list): Dataset that was used for clustering.
@param[in] clusters (array_like): Clusters that were allocated by the algorithm.
@param[in] representatives (array_like): Allocated representatives correspond to clusters.
@param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'figure', 'display', 'offset').
<b>Keyword Args:</b><br>
- figure (figure): If 'None' then new is figure is created, otherwise specified figure is used for visualization.
- display (bool): If 'True' then figure will be shown by the method, otherwise it should be shown manually using matplotlib function 'plt.show()'.
- offset (uint): Specify axes index on the figure where results should be drawn (only if argument 'figure' is specified).
@return (figure) Figure where clusters were drawn.
"""
figure = kwargs.get('figure', None)
display = kwargs.get('display', True)
offset = kwargs.get('offset', 0)
visualizer = cluster_visualizer()
visualizer.append_clusters(clusters, sample, canvas=offset)
for cluster_index in range(len(clusters)):
visualizer.append_cluster_attribute(offset, cluster_index, [representatives[cluster_index]], '*', 10)
return visualizer.show(figure=figure, display=display)
class bsas:
"""!
@brief Class represents BSAS clustering algorithm - basic sequential algorithmic scheme.
@details Algorithm has two mandatory parameters: maximum allowable number of clusters and threshold
of dissimilarity or in other words maximum distance between points. Distance metric also can
be specified using 'metric' parameters, by default 'Manhattan' distance is used.
BSAS using following rule for updating cluster representative:
\f[
\vec{m}_{C_{k}}^{new}=\frac{ \left ( n_{C_{k}^{new}} - 1 \right )\vec{m}_{C_{k}}^{old} + \vec{x} }{n_{C_{k}^{new}}}
\f]
Clustering results of this algorithm depends on objects order in input data.
Example:
@code
from pyclustering.cluster.bsas import bsas, bsas_visualizer
from pyclustering.utils import read_sample
from pyclustering.samples.definitions import SIMPLE_SAMPLES
# Read data sample from 'Simple02.data'.
sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE2)
# Prepare algorithm's parameters.
max_clusters = 3
threshold = 1.0
# Create instance of BSAS algorithm.
bsas_instance = bsas(sample, max_clusters, threshold)
bsas_instance.process()
# Get clustering results.
clusters = bsas_instance.get_clusters()
representatives = bsas_instance.get_representatives()
# Display results.
bsas_visualizer.show_clusters(sample, clusters, representatives)
@endcode
@see pyclustering.cluster.mbsas, pyclustering.cluster.ttsas
"""
def __init__(self, data, maximum_clusters, threshold, ccore=True, **kwargs):
"""!
@brief Creates classical BSAS algorithm.
@param[in] data (list): Input data that is presented as list of points (objects), each point should be represented by list or tuple.
@param[in] maximum_clusters: Maximum allowable number of clusters that can be allocated during processing.
@param[in] threshold: Threshold of dissimilarity (maximum distance) between points.
@param[in] ccore (bool): If True than CCORE (C++ part of the library) will be used for solving.
@param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'metric').
<b>Keyword Args:</b><br>
- metric (distance_metric): Metric that is used for distance calculation between two points.
"""
self._data = data
self._amount = maximum_clusters
self._threshold = threshold
self._metric = kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN))
self._ccore = ccore and self._metric.get_type() != type_metric.USER_DEFINED
self._clusters = []
self._representatives = []
if self._ccore is True:
self._ccore = ccore_library.workable()
self._verify_arguments()
def process(self):
"""!
@brief Performs cluster analysis in line with rules of BSAS algorithm.
@return (bsas) Returns itself (BSAS instance).
@remark Results of clustering can be obtained using corresponding get methods.
@see get_clusters()
@see get_representatives()
"""
if self._ccore is True:
self.__process_by_ccore()
else:
self.__prcess_by_python()
return self
def __process_by_ccore(self):
ccore_metric = metric_wrapper.create_instance(self._metric)
self._clusters, self._representatives = bsas_wrapper(self._data, self._amount, self._threshold, ccore_metric.get_pointer())
def __prcess_by_python(self):
self._clusters.append([0])
self._representatives.append(self._data[0])
for i in range(1, len(self._data)):
point = self._data[i]
index_cluster, distance = self._find_nearest_cluster(point)
if (distance > self._threshold) and (len(self._clusters) < self._amount):
self._representatives.append(point)
self._clusters.append([i])
else:
self._clusters[index_cluster].append(i)
self._update_representative(index_cluster, point)
def get_clusters(self):
"""!
@brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data.
@see process()
@see get_representatives()
"""
return self._clusters
def get_representatives(self):
"""!
@brief Returns list of representatives of allocated clusters.
@see process()
@see get_clusters()
"""
return self._representatives
def get_cluster_encoding(self):
"""!
@brief Returns clustering result representation type that indicate how clusters are encoded.
@return (type_encoding) Clustering result representation.
@see get_clusters()
"""
return type_encoding.CLUSTER_INDEX_LIST_SEPARATION
def _find_nearest_cluster(self, point):
"""!
@brief Find nearest cluster to the specified point.
@param[in] point (list): Point from dataset.
@return (uint, double) Index of nearest cluster and distance to it.
"""
index_cluster = -1
nearest_distance = float('inf')
for index in range(len(self._representatives)):
distance = self._metric(point, self._representatives[index])
if distance < nearest_distance:
index_cluster = index
nearest_distance = distance
return index_cluster, nearest_distance
def _update_representative(self, index_cluster, point):
"""!
@brief Update cluster representative in line with new cluster size and added point to it.
@param[in] index_cluster (uint): Index of cluster whose representative should be updated.
@param[in] point (list): Point that was added to cluster.
"""
length = len(self._clusters[index_cluster])
rep = self._representatives[index_cluster]
for dimension in range(len(rep)):
rep[dimension] = ( (length - 1) * rep[dimension] + point[dimension] ) / length
def _verify_arguments(self):
"""!
@brief Verify input parameters for the algorithm and throw exception in case of incorrectness.
"""
if len(self._data) == 0:
raise ValueError("Input data is empty (size: '%d')." % len(self._data))
if self._amount <= 0:
raise ValueError("Amount of cluster (current value: '%d') for allocation should be greater than 0." %
self._amount)
if self._threshold < 0:
raise ValueError("Threshold of dissimilarity (current value: '%d') between points should be greater or "
"equal to 0." % self._threshold)
|