File: clique.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (773 lines) | stat: -rwxr-xr-x 27,395 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
"""!

@brief Cluster analysis algorithm: CLIQUE
@details Implementation based on paper @cite article::clique::1.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""


import itertools

from pyclustering.cluster import cluster_visualizer
from pyclustering.cluster.encoder import type_encoding

from pyclustering.core.wrapper import ccore_library

import pyclustering.core.clique_wrapper as wrapper

import matplotlib
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import matplotlib.patches as patches


class clique_visualizer:
    """!
    @brief Visualizer of CLIQUE algorithm's results.
    @details CLIQUE visualizer provides visualization services that are specific for CLIQUE algorithm, for example,
              to display grid and its density.

    """

    __maximum_density_alpha = 0.6

    @staticmethod
    def show_grid(cells, data):
        """!
        @brief Show CLIQUE blocks as a grid in data space.
        @details Each block contains points and according to this density is displayed. CLIQUE grid helps to visualize
                  grid that was used for clustering process.

        @param[in] cells (list): List of cells that is produced by CLIQUE algorithm.
        @param[in] data (array_like): Input data that was used for clustering process.

        """
        dimension = cells[0].dimensions

        amount_canvases = 1
        if dimension > 1:
            amount_canvases = int(dimension * (dimension - 1) / 2)

        figure = plt.figure()
        grid_spec = gridspec.GridSpec(1, amount_canvases)

        pairs = list(itertools.combinations(range(dimension), 2))
        if len(pairs) == 0: pairs = [(0, 0)]

        for index in range(amount_canvases):
            ax = figure.add_subplot(grid_spec[index])
            clique_visualizer.__draw_cells(ax, cells, pairs[index])
            clique_visualizer.__draw_two_dimension_data(ax, data, pairs[index])

        plt.show()


    @staticmethod
    def show_clusters(data, clusters, noise=None):
        """!
        @brief Display CLIQUE clustering results.

        @param[in] data (list): Data that was used for clustering.
        @param[in] clusters (array_like): Clusters that were allocated by the algorithm.
        @param[in] noise (array_like): Noise that were allocated by the algorithm.

        """
        visualizer = cluster_visualizer()
        visualizer.append_clusters(clusters, data)
        visualizer.append_cluster(noise or [], data, marker='x')
        visualizer.show()


    @staticmethod
    def __draw_two_dimension_data(ax, data, pair):
        """!
        @brief Display data in two-dimensional canvas.

        @param[in] ax (Axis): Canvas where data should be displayed.
        @param[in] data (list): Data points that should be displayed.
        @param[in] pair (tuple): Pair of dimension indexes.

        """
        ax.set_xlabel("x%d" % pair[0])
        ax.set_ylabel("x%d" % pair[1])

        for point in data:
            if len(data[0]) > 1:
                ax.plot(point[pair[0]], point[pair[1]], color='red', marker='.')
            else:
                ax.plot(point[pair[0]], 0, color='red', marker='.')
                ax.yaxis.set_ticklabels([])


    @staticmethod
    def __draw_cells(ax, cells, pair):
        ax.grid(False)

        density_scale = max(len(cell.points) for cell in cells)
        for cell in cells:
            clique_visualizer.__draw_cell(ax, pair, cell, density_scale)


    @staticmethod
    def __draw_cell(ax, pair, cell, density_scale):
        max_corner, min_corner = clique_visualizer.__get_rectangle_description(cell, pair)

        belong_cluster = (len(cell.points) > 0)

        if density_scale != 0.0:
            density_scale = clique_visualizer.__maximum_density_alpha * len(cell.points) / density_scale

        face_color = matplotlib.colors.to_rgba('blue', alpha=density_scale)
        edge_color = matplotlib.colors.to_rgba('black', alpha=1.0)

        rect = patches.Rectangle(min_corner, max_corner[0] - min_corner[0], max_corner[1] - min_corner[1],
                                 fill=belong_cluster,
                                 facecolor=face_color,
                                 edgecolor=edge_color,
                                 linewidth=0.5)
        ax.add_patch(rect)
        #ax.annotate(str(cell.logical_location), (min_corner[0], min_corner[1]), fontsize=6, ha='center', va='center')


    @staticmethod
    def __get_rectangle_description(cell, pair):
        max_corner, min_corner = cell.spatial_location.get_corners()

        max_corner = [max_corner[pair[0]], max_corner[pair[1]]]
        min_corner = [min_corner[pair[0]], min_corner[pair[1]]]

        if pair == (0, 0):
            max_corner[1], min_corner[1] = 1.0, -1.0

        return max_corner, min_corner



class spatial_block:
    """!
    @brief Geometrical description of CLIQUE block in data space.
    @details Provides services related to spatial functionality.

    @see bang_block

    """

    def __init__(self, max_corner, min_corner):
        """!
        @brief Creates spatial block in data space.

        @param[in] max_corner (array_like): Maximum corner coordinates of the block.
        @param[in] min_corner (array_like): Minimal corner coordinates of the block.

        """
        self.__max_corner = max_corner
        self.__min_corner = min_corner


    def __str__(self):
        """!
        @brief Returns string block description.

        @return String representation of the block.

        """
        return "(max: %s; min: %s)" % (self.__max_corner, self.__min_corner)


    def __contains__(self, point):
        """!
        @brief Point is considered as contained if it lies in block (belong to it).

        @return (bool) True if point is in block, otherwise False.

        """
        for i in range(len(point)):
            if point[i] < self.__min_corner[i] or point[i] > self.__max_corner[i]:
                return False

        return True


    def get_corners(self):
        """!
        @brief Return spatial description of current block.

        @return (tuple) Pair of maximum and minimum corners (max_corner, min_corner).

        """
        return self.__max_corner, self.__min_corner



class clique_block:
    """!
    @brief CLIQUE block contains information about its logical location in grid, spatial location in data space and
            points that are covered by the block.

    """

    def __init__(self, logical_location=None, spatial_location=None, points=None, visited=False):
        """!
        @brief Initializes CLIQUE block.

        @param[in] logical_location (list): Logical location of the block in CLIQUE grid.
        @param[in] spatial_location (spatial_block): Spatial location in data space.
        @param[in] points (array_like): Points that belong to this block (can be obtained by method 'capture_points',
                    this parameter is used by CLIQUE in case of processing by C++ implementation when clustering
                    result are passed back to Python code.
        @param[in] visited (bool): Marks if block is visited during clustering process.

        """
        self.__logical_location = logical_location or []
        self.__spatial_location = spatial_location
        self.__points = points or []
        self.__visited = visited

    def __str__(self):
        """!
        @brief Returns string representation of the block using its logical location in CLIQUE grid.

        """
        return str(self.__logical_location)

    def __repr__(self):
        """!
        @brief Returns string representation of the block using its logical location in CLIQUE grid.

        """
        return str(self.__logical_location)

    @property
    def logical_location(self):
        """!
        @brief Logical location is represented by coordinates in CLIQUE grid, for example, in case of 2x2 grid blocks
                may have following coordinates: [0, 0], [0, 1], [1, 0], [1, 1].
        @return (list) Logical location of the block in CLIQUE grid.

        """
        return self.__logical_location

    @logical_location.setter
    def logical_location(self, location):
        """!
        @brief Assign logical location to CLIQUE block.

        @param[in] location (list): New logical location of the block in CLIQUE grid.

        """
        self.__logical_location = location

    @property
    def spatial_location(self):
        """!
        @brief Spatial location is represented by real data space coordinates.
        @return (spatial_block) Spatial block that describes location in data space.

        """
        return self.__spatial_location

    @spatial_location.setter
    def spatial_location(self, location):
        """!
        @brief Assign spatial location to CLIQUE block.

        @param[in] location (spatial_block): New spatial location of the block.

        """
        self.__spatial_location = location

    @property
    def dimensions(self):
        """!
        @brief Amount of dimensions where CLIQUE block is located.
        @return (uint) Amount of dimensions where CLIQUE block is located.

        """
        return len(self.__logical_location)

    @property
    def points(self):
        """!
        @brief Points that belong to the CLIQUE block.
        @details Points are represented by indexes that correspond to points in input data space.

        @return (array_like) Points that belong to the CLIQUE block.

        @see capture_points

        """
        return self.__points

    @property
    def visited(self):
        """!
        @brief Defines whether block is visited during cluster analysis.
        @details If cluster analysis has not been performed then value will False.

        @return (bool) True if block has been visited during processing, False otherwise.

        """
        return self.__visited

    @visited.setter
    def visited(self, visited):
        """!
        @brief Marks or unmarks block as a visited.
        @details This setter is used by CLIQUE algorithm.

        @param[in] visited (bool): New visited state for the CLIQUE block.

        """
        self.__visited = visited


    def capture_points(self, data, point_availability):
        """!
        @brief Finds points that belong to this block using availability map to reduce computational complexity by
                checking whether the point belongs to the block.
        @details Algorithm complexity of this method is O(n).

        @param[in] data (array_like): Data where points are represented as coordinates.
        @param[in] point_availability (array_like): Contains boolean values that denote whether point is already belong
                    to another CLIQUE block.

        """
        for index_point in range(len(data)):
            if (point_availability[index_point] is True) and (data[index_point] in self.__spatial_location):
                self.__points.append(index_point)
                point_availability[index_point] = False


    def get_location_neighbors(self, edge):
        """!
        @brief Forms list of logical location of each neighbor for this particular CLIQUE block.

        @param[in] edge (uint): Amount of intervals in each dimension that is used for clustering process.

        @return (list) Logical location of each neighbor for this particular CLIQUE block.

        """
        neighbors = []

        for index_dimension in range(len(self.__logical_location)):
            if self.__logical_location[index_dimension] + 1 < edge:
                position = self.__logical_location[:]
                position[index_dimension] += 1
                neighbors.append(position)

            if self.__logical_location[index_dimension] - 1 >= 0:
                position = self.__logical_location[:]
                position[index_dimension] -= 1
                neighbors.append(position)

        return neighbors



class coordinate_iterator:
    """!
    @brief Coordinate iterator is used to generate logical location description for each CLIQUE block.
    @details This class is used by CLIQUE algorithm for clustering process.

    """

    def __init__(self, dimension, intervals):
        """!
        @brief Initializes coordinate iterator for CLIQUE algorithm.

        @param[in] dimension (uint): Amount of dimensions in input data space.
        @param[in] intervals (uint): Amount of intervals in each dimension.

        """
        self.__intervals = intervals
        self.__dimension = dimension
        self.__coordiate = [0] * dimension


    def get_coordinate(self):
        """!
        @brief Returns current block coordinate.

        """
        return self.__coordiate


    def increment(self):
        """!
        @brief Forms logical location for next block.

        """
        for index_dimension in range(self.__dimension):
            if self.__coordiate[index_dimension] + 1 < self.__intervals:
                self.__coordiate[index_dimension] += 1
                return
            else:
                self.__coordiate[index_dimension] = 0

        self.__coordiate = None



class clique:
    """!
    @brief Class implements CLIQUE grid based clustering algorithm.
    @details CLIQUE automatically finds subspaces with high-density clusters. It produces identical results
              irrespective of the order in which the input records are presented and it does not presume any canonical
              distribution for input data @cite article::clique::1.

    Here is an example where data in two-dimensional space is clustered using CLIQUE algorithm:
    @code
        from pyclustering.cluster.clique import clique, clique_visualizer
        from pyclustering.utils import read_sample
        from pyclustering.samples.definitions import FCPS_SAMPLES

        # read two-dimensional input data 'Target'
        data = read_sample(FCPS_SAMPLES.SAMPLE_TARGET)

        # create CLIQUE algorithm for processing
        intervals = 10  # defines amount of cells in grid in each dimension
        threshold = 0   # lets consider each point as non-outlier
        clique_instance = clique(data, intervals, threshold)

        # start clustering process and obtain results
        clique_instance.process()
        clusters = clique_instance.get_clusters()  # allocated clusters
        noise = clique_instance.get_noise()     # points that are considered as outliers (in this example should be empty)
        cells = clique_instance.get_cells()     # CLIQUE blocks that forms grid

        print("Amount of clusters:", len(clusters))

        # visualize clustering results
        clique_visualizer.show_grid(cells, data)    # show grid that has been formed by the algorithm
        clique_visualizer.show_clusters(data, clusters, noise)  # show clustering results
    @endcode

    In this example 6 clusters are allocated including four small cluster where each such small cluster consists of
    three points. There are visualized clustering results - grid that has been formed by CLIQUE algorithm with
    density and clusters itself:
    @image html clique_clustering_target.png "Fig. 1. CLIQUE clustering results (grid and clusters itself)."

    Sometimes such small clusters should be considered as outliers taking into account fact that two clusters in the
    central are relatively huge. To treat them as a noise threshold value should be increased:
    @code
        intervals = 10
        threshold = 3   # block that contains 3 or less points is considered as a outlier as well as its points
        clique_instance = clique(data, intervals, threshold)
    @endcode

    Two clusters are allocated, but in this case some points in cluster-"circle" are also considered as outliers,
    because CLIQUE operates with blocks, not with points:
    @image html clique_clustering_with_noise.png "Fig. 2. Noise allocation by CLIQUE."

    """

    def __init__(self, data, amount_intervals, density_threshold, **kwargs):
        """!
        @brief Create CLIQUE clustering algorithm.

        @param[in] data (list): Input data (list of points) that should be clustered.
        @param[in] amount_intervals (uint): Amount of intervals in each dimension that defines amount of CLIQUE blocks
                    as \f[N_{blocks} = intervals^{dimensions}\f].
        @param[in] density_threshold (uint): Minimum number of points that should contain CLIQUE block to consider its
                    points as non-outliers.
        @param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'ccore').

        <b>Keyword Args:</b><br>
            - ccore (bool): By default is True. If True then C++ implementation is used for cluster analysis, otherwise
               Python implementation is used.

        """
        self.__data = data
        self.__amount_intervals = amount_intervals
        self.__density_threshold = density_threshold

        self.__ccore = kwargs.get('ccore', True)
        if self.__ccore:
            self.__ccore = ccore_library.workable()

        self.__clusters = []
        self.__noise = []

        self.__cells = []
        self.__cells_map = {}

        self.__validate_arguments()


    def process(self):
        """!
        @brief Performs clustering process in line with rules of CLIQUE clustering algorithm.

        @return (clique) Returns itself (CLIQUE instance).

        @see get_clusters()
        @see get_noise()
        @see get_cells()

        """

        if self.__ccore:
            self.__process_by_ccore()
        else:
            self.__process_by_python()

        return self


    def get_clusters(self):
        """!
        @brief Returns allocated clusters.

        @remark Allocated clusters are returned only after data processing (method process()). Otherwise empty list is returned.

        @return (list) List of allocated clusters, each cluster contains indexes of objects in list of data.

        @see process()
        @see get_noise()

        """
        return self.__clusters


    def get_noise(self):
        """!
        @brief Returns allocated noise.

        @remark Allocated noise is returned only after data processing (method process()). Otherwise empty list is returned.

        @return (list) List of indexes that are marked as a noise.

        @see process()
        @see get_clusters()

        """
        return self.__noise


    def get_cells(self):
        """!
        @brief Returns CLIQUE blocks that are formed during clustering process.
        @details CLIQUE blocks can be used for visualization purposes. Each CLIQUE block contain its logical location
                  in grid, spatial location in data space and points that belong to block.

        @return (list) List of CLIQUE blocks.

        """
        return self.__cells


    def get_cluster_encoding(self):
        """!
        @brief Returns clustering result representation type that indicate how clusters are encoded.

        @return (type_encoding) Clustering result representation.

        @see get_clusters()

        """

        return type_encoding.CLUSTER_INDEX_LIST_SEPARATION


    def __process_by_ccore(self):
        """!
        @brief Performs cluster analysis using C++ implementation of CLIQUE algorithm that is used by default if
                user's target platform is supported.

        """
        result = wrapper.clique(self.__data, self.__amount_intervals, self.__density_threshold)

        (self.__clusters, self.__noise, block_logical_locations, max_corners, min_corners, block_points) = result

        amount_cells = len(block_logical_locations)
        for i in range(amount_cells):
            self.__cells.append(clique_block(block_logical_locations[i],
                                             spatial_block(max_corners[i], min_corners[i]),
                                             block_points[i],
                                             True))


    def __process_by_python(self):
        """!
        @brief Performs cluster analysis using Python implementation of CLIQUE algorithm.

        """
        self.__create_grid()
        self.__allocate_clusters()

        self.__cells_map.clear()


    def __validate_arguments(self):
        """!
        @brief Check input arguments of CLIQUE algorithm and if one of them is not correct then appropriate exception
                is thrown.

        """

        if len(self.__data) == 0:
            raise ValueError("Empty input data. Data should contain at least one point.")

        if self.__amount_intervals <= 0:
            raise ValueError("Incorrect amount of intervals '%d'. Amount of intervals value should be greater than 0." % self.__amount_intervals)

        if self.__density_threshold < 0:
            raise ValueError("Incorrect density threshold '%f'. Density threshold should not be negative." % self.__density_threshold)


    def __allocate_clusters(self):
        """!
        @brief Performs cluster analysis using formed CLIQUE blocks.

        """
        for cell in self.__cells:
            if cell.visited is False:
                self.__expand_cluster(cell)


    def __expand_cluster(self, cell):
        """!
        @brief Tries to expand cluster from specified cell.
        @details During expanding points are marked as noise or append to new cluster.

        @param[in] cell (clique_block): CLIQUE block from that cluster should be expanded.

        """
        cell.visited = True

        if len(cell.points) <= self.__density_threshold:
            if len(cell.points) > 0:
                self.__noise.extend(cell.points)

            return

        cluster = cell.points[:]
        neighbors = self.__get_neighbors(cell)

        for neighbor in neighbors:
            if len(neighbor.points) > self.__density_threshold:
                cluster.extend(neighbor.points)
                neighbors += self.__get_neighbors(neighbor)

            elif len(neighbor.points) > 0:
                self.__noise.extend(neighbor.points)

        self.__clusters.append(cluster)


    def __get_neighbors(self, cell):
        """!
        @brief Returns neighbors for specified CLIQUE block as clique_block objects.

        @return (list) Neighbors as clique_block objects.

        """
        neighbors = []
        location_neighbors = cell.get_location_neighbors(self.__amount_intervals)

        for i in range(len(location_neighbors)):
            key = self.__location_to_key(location_neighbors[i])
            candidate_neighbor = self.__cell_map[key]

            if not candidate_neighbor.visited:
                candidate_neighbor.visited = True
                neighbors.append(candidate_neighbor)

        return neighbors


    def __create_grid(self):
        """!
        @brief Creates CLIQUE grid that consists of CLIQUE blocks for clustering process.

        """
        data_sizes, min_corner, max_corner = self.__get_data_size_derscription()
        dimension = len(self.__data[0])

        cell_sizes = [dimension_length / self.__amount_intervals for dimension_length in data_sizes]

        self.__cells = [clique_block() for _ in range(pow(self.__amount_intervals, dimension))]
        iterator = coordinate_iterator(dimension, self.__amount_intervals)

        point_availability = [True] * len(self.__data)
        self.__cell_map = {}
        for index_cell in range(len(self.__cells)):
            logical_location = iterator.get_coordinate()
            iterator.increment()

            self.__cells[index_cell].logical_location = logical_location[:]

            cur_max_corner, cur_min_corner = self.__get_spatial_location(logical_location, min_corner, max_corner, cell_sizes)
            self.__cells[index_cell].spatial_location = spatial_block(cur_max_corner, cur_min_corner)

            self.__cells[index_cell].capture_points(self.__data, point_availability)

            self.__cell_map[self.__location_to_key(logical_location)] = self.__cells[index_cell]


    def __location_to_key(self, location):
        """!
        @brief Forms key using logical location of a CLIQUE block.

        @return (string) Key for CLIQUE block map.

        """
        return ''.join(str(e) + '.' for e in location)


    def __get_spatial_location(self, logical_location, min_corner, max_corner, cell_sizes):
        """!
        @brief Calculates spatial location for CLIQUE block with logical coordinates defined by logical_location.

        @param[in] logical_location (list): Logical location of CLIQUE block for that spatial location should be calculated.
        @param[in] min_corner (list): Minimum corner of an input data.
        @param[in] max_corner (list): Maximum corner of an input data.
        @param[in] cell_sizes (list): Size of CLIQUE block in each dimension.

        @return (list, list): Maximum and minimum corners for the specified CLIQUE block.

        """
        cur_min_corner = min_corner[:]
        cur_max_corner = min_corner[:]
        dimension = len(self.__data[0])
        for index_dimension in range(dimension):
            cur_min_corner[index_dimension] += cell_sizes[index_dimension] * logical_location[index_dimension]

            if logical_location[index_dimension] == self.__amount_intervals - 1:
                cur_max_corner[index_dimension] = max_corner[index_dimension]
            else:
                cur_max_corner[index_dimension] = cur_min_corner[index_dimension] + cell_sizes[index_dimension]

        return cur_max_corner, cur_min_corner


    def __get_data_size_derscription(self):
        """!
        @brief Calculates input data description that is required to create CLIQUE grid.

        @return (list, list, list): Data size in each dimension, minimum and maximum corners.

        """
        min_corner = self.__data[0][:]
        max_corner = self.__data[0][:]

        dimension = len(self.__data[0])

        for index_point in range(1, len(self.__data)):
            for index_dimension in range(dimension):
                coordinate = self.__data[index_point][index_dimension]
                if coordinate > max_corner[index_dimension]:
                    max_corner[index_dimension] = coordinate

                if coordinate < min_corner[index_dimension]:
                    min_corner[index_dimension] = coordinate

        data_sizes = [0.0] * dimension
        for index_dimension in range(dimension):
            data_sizes[index_dimension] = max_corner[index_dimension] - min_corner[index_dimension]

        return data_sizes, min_corner, max_corner