1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
"""!
@brief Module for representing clustering results.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import math
from enum import IntEnum
class type_encoding(IntEnum):
"""!
@brief Enumeration of encoding types (index labeling, index list separation, object list separation).
"""
## Results are represented by list of indexes and belonging to the cluster is defined by cluster index and element's position corresponds to object's position in input data, for example [0, 0, 1, 1, 1, 0].
CLUSTER_INDEX_LABELING = 0
## Results are represented by list of lists, where each list consists of object indexes from input data, for example [ [0, 1, 2], [3, 4, 5], [6, 7] ].
CLUSTER_INDEX_LIST_SEPARATION = 1
## Results are represented by list of lists, where each list consists of objects from input data, for example [ [obj1, obj2], [obj3, obj4, obj5], [obj6, obj7] ].
CLUSTER_OBJECT_LIST_SEPARATION = 2
class cluster_encoder:
"""!
@brief Provides service to change clustering result representation.
@details There are three general types of representation:
1. Index List Separation that is defined by `CLUSTER_INDEX_LIST_SEPARATION`, for example `[[0, 1, 2], [3, 4], [5, 6, 7]`.
2. Index Labeling that is defined by `CLUSTER_INDEX_LABELING`, for example `[0, 0, 0, 1, 1, 2, 2, 2]`.
3. Object List Separation that is defined by `CLUSTER_OBJECT_LIST_SEPARATION`, for example `[[obj1, obj2, obj3], [obj4, obj5], [obj5, obj6, obj7]`.
There is an example how to covert default Index List Separation to other types:
@code
from pyclustering.utils import read_sample
from pyclustering.samples.definitions import SIMPLE_SAMPLES
from pyclustering.cluster.encoder import type_encoding, cluster_encoder
from pyclustering.cluster.kmeans import kmeans
# load list of points for cluster analysis
sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1)
# create instance of K-Means algorithm
kmeans_instance = kmeans(sample, [[3.0, 5.1], [6.5, 8.6]])
# run cluster analysis and obtain results
kmeans_instance.process()
clusters = kmeans_instance.get_clusters()
print("Index List Separation:", clusters)
# by default k-means returns representation CLUSTER_INDEX_LIST_SEPARATION
type_repr = kmeans_instance.get_cluster_encoding()
encoder = cluster_encoder(type_repr, clusters, sample)
# change representation from index list to label list
encoder.set_encoding(type_encoding.CLUSTER_INDEX_LABELING)
print("Index Labeling:", encoder.get_clusters())
# change representation from label to object list
encoder.set_encoding(type_encoding.CLUSTER_OBJECT_LIST_SEPARATION)
print("Object List Separation:", encoder.get_clusters())
@endcode
Output of the code above is following:
@code
Index List Separation: [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
Index Labeling: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
Object List Separation: [[[3.522979, 5.487981], [3.768699, 5.364477], [3.423602, 5.4199], [3.803905, 5.389491], [3.93669, 5.663041]], [[6.968136, 7.755556], [6.750795, 7.269541], [6.593196, 7.850364], [6.978178, 7.60985], [6.554487, 7.498119]]]
@endcode
If there is no index or object in clusters that exists in an input data then it is going to be marked as `NaN` in
case of Index Labeling. Here is an example:
@code
from pyclustering.cluster.encoder import type_encoding, cluster_encoder
# An input data.
sample = [[1.0, 1.2], [1.2, 2.3], [114.3, 54.1], [2.2, 1.4], [5.3, 1.3]]
# Clusters do not contains object with index 2 ([114.3, 54.1]) because it is outline.
clusters = [[0, 1], [3, 4]]
encoder = cluster_encoder(type_encoding.CLUSTER_INDEX_LIST_SEPARATION, clusters, sample)
encoder.set_encoding(type_encoding.CLUSTER_INDEX_LABELING)
print("Index Labeling:", encoder.get_clusters())
@endcode
Here is an output of the code above. Pay attention to `NaN` value for the object with index 2 `[114.3, 54.1]`.
@code
Index Labeling: [0, 0, nan, 1, 1]
@endcode
"""
def __init__(self, encoding, clusters, data):
"""!
@brief Constructor of clustering result representor.
@param[in] encoding (type_encoding): Type of clusters representation (Index List, Object List or Labels).
@param[in] clusters (list): Clusters that were allocated from an input data.
@param[in] data (list): Data that was used for cluster analysis.
@see type_encoding
"""
self.__type_representation = encoding
self.__clusters = clusters
self.__data = data
@property
def get_encoding(self):
"""!
@brief Returns current cluster representation.
"""
return self.__type_representation
def get_clusters(self):
"""!
@brief Returns clusters that are represented in line with type that is defined by `get_encoding()`.
@see get_encoding()
"""
return self.__clusters
def get_data(self):
"""!
@brief Returns data that was used for cluster analysis.
"""
return self.__data
def set_encoding(self, encoding):
"""!
@brief Change clusters encoding to specified type (Index List, Object List, Labeling).
@param[in] encoding (type_encoding): New type of clusters representation.
@return (cluster_encoder) Return itself.
"""
if encoding == self.__type_representation:
return self
if self.__type_representation == type_encoding.CLUSTER_INDEX_LABELING:
if encoding == type_encoding.CLUSTER_INDEX_LIST_SEPARATION:
self.__clusters = self.__convert_label_to_index()
else:
self.__clusters = self.__convert_label_to_object()
elif self.__type_representation == type_encoding.CLUSTER_INDEX_LIST_SEPARATION:
if encoding == type_encoding.CLUSTER_INDEX_LABELING:
self.__clusters = self.__convert_index_to_label()
else:
self.__clusters = self.__convert_index_to_object()
else:
if encoding == type_encoding.CLUSTER_INDEX_LABELING:
self.__clusters = self.__convert_object_to_label()
else:
self.__clusters = self.__convert_object_to_index()
self.__type_representation = encoding
return self
def __convert_index_to_label(self):
clusters = [float('NaN')] * len(self.__data)
index_cluster = 0
for cluster in self.__clusters:
for index_object in cluster:
clusters[index_object] = index_cluster
index_cluster += 1
return clusters
def __convert_index_to_object(self):
clusters = [ [] for _ in range(len(self.__clusters)) ]
for index_cluster in range(len(self.__clusters)):
for index_object in self.__clusters[index_cluster]:
data_object = self.__data[index_object]
clusters[index_cluster].append(data_object)
return clusters
def __convert_object_to_label(self):
positions = dict()
clusters = [float('NaN')] * len(self.__data)
index_cluster = 0
for cluster in self.__clusters:
for data_object in cluster:
hashable_data_object = str(data_object)
if hashable_data_object in positions:
index_object = self.__data.index(data_object, positions[hashable_data_object] + 1)
else:
index_object = self.__data.index(data_object)
clusters[index_object] = index_cluster
positions[hashable_data_object] = index_object
index_cluster += 1
return clusters
def __convert_object_to_index(self):
positions = dict()
clusters = [[] for _ in range(len(self.__clusters))]
for index_cluster in range(len(self.__clusters)):
for data_object in self.__clusters[index_cluster]:
hashable_data_object = str(data_object)
if hashable_data_object in positions:
index_object = self.__data.index(data_object, positions[hashable_data_object] + 1)
else:
index_object = self.__data.index(data_object)
clusters[index_cluster].append(index_object)
positions[hashable_data_object] = index_object
return clusters
def __convert_label_to_index(self):
clusters = [[] for _ in range(max(self.__clusters) + 1)]
for index_object in range(len(self.__data)):
index_cluster = self.__clusters[index_object]
if not math.isnan(index_cluster):
clusters[index_cluster].append(index_object)
return clusters
def __convert_label_to_object(self):
clusters = [[] for _ in range(max(self.__clusters) + 1)]
for index_object in range(len(self.__data)):
index_cluster = self.__clusters[index_object]
if not math.isnan(index_cluster):
clusters[index_cluster].append(self.__data[index_object])
return clusters
|