File: birch_examples.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (151 lines) | stat: -rwxr-xr-x 5,638 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""!

@brief Examples of usage and demonstration of abilities of BIRCH algorithm in cluster analysis.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""

from pyclustering.cluster import cluster_visualizer
from pyclustering.cluster.birch import birch

from pyclustering.container.cftree import measurement_type

from pyclustering.utils import read_sample

from pyclustering.samples.definitions import SIMPLE_SAMPLES, FCPS_SAMPLES


def template_clustering(number_clusters, path, branching_factor=50, max_node_entries=100, initial_diameter=0.5, type_measurement=measurement_type.CENTROID_EUCLIDEAN_DISTANCE, entry_size_limit=200, diameter_multiplier=1.5, show_result=True):
    print("Sample: ", path)

    sample = read_sample(path)

    birch_instance = birch(sample, number_clusters, branching_factor, max_node_entries, initial_diameter,
                           type_measurement, entry_size_limit, diameter_multiplier)
    birch_instance.process()
    clusters = birch_instance.get_clusters()

    if show_result is True:
        visualizer = cluster_visualizer()
        visualizer.append_clusters(clusters, sample)
        visualizer.show()
    
    return sample, clusters


def cluster_sample1():
    template_clustering(2, SIMPLE_SAMPLES.SAMPLE_SIMPLE1)
    template_clustering(2, SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 5, 5, 0.1, measurement_type.CENTROID_EUCLIDEAN_DISTANCE, 2)      # only two entries available

def cluster_sample2():
    template_clustering(3, SIMPLE_SAMPLES.SAMPLE_SIMPLE2)

def cluster_sample3():
    template_clustering(4, SIMPLE_SAMPLES.SAMPLE_SIMPLE3)

def cluster_sample4():
    template_clustering(5, SIMPLE_SAMPLES.SAMPLE_SIMPLE4)
    
def cluster_sample5():
    template_clustering(4, SIMPLE_SAMPLES.SAMPLE_SIMPLE5)

def cluster_sample7():
    template_clustering(2, SIMPLE_SAMPLES.SAMPLE_SIMPLE7)

def cluster_sample8():
    template_clustering(4, SIMPLE_SAMPLES.SAMPLE_SIMPLE8)

def cluster_elongate():
    template_clustering(2, SIMPLE_SAMPLES.SAMPLE_ELONGATE)

def cluster_lsun():
    template_clustering(3, FCPS_SAMPLES.SAMPLE_LSUN)

def cluster_lsun_rebuilt():
    template_clustering(3, FCPS_SAMPLES.SAMPLE_LSUN, entry_size_limit=20, diameter_multiplier=1.5)

def cluster_target():
    template_clustering(6, FCPS_SAMPLES.SAMPLE_TARGET)

def cluster_two_diamonds():
    template_clustering(2, FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)

def cluster_wing_nut():
    template_clustering(2, FCPS_SAMPLES.SAMPLE_WING_NUT)

def cluster_chainlink():
    template_clustering(2, FCPS_SAMPLES.SAMPLE_CHAINLINK)

def cluster_hepta():
    template_clustering(7, FCPS_SAMPLES.SAMPLE_HEPTA)

def cluster_tetra():
    template_clustering(4, FCPS_SAMPLES.SAMPLE_TETRA)

def cluster_engy_time():
    template_clustering(2, FCPS_SAMPLES.SAMPLE_ENGY_TIME)


def experiment_execution_time(ccore=False):
    template_clustering(2, SIMPLE_SAMPLES.SAMPLE_SIMPLE1)
    template_clustering(3, SIMPLE_SAMPLES.SAMPLE_SIMPLE2)
    template_clustering(4, SIMPLE_SAMPLES.SAMPLE_SIMPLE3)
    template_clustering(5, SIMPLE_SAMPLES.SAMPLE_SIMPLE4)
    template_clustering(4, SIMPLE_SAMPLES.SAMPLE_SIMPLE5)
    template_clustering(2, SIMPLE_SAMPLES.SAMPLE_ELONGATE)
    template_clustering(3, FCPS_SAMPLES.SAMPLE_LSUN)
    template_clustering(6, FCPS_SAMPLES.SAMPLE_TARGET)
    template_clustering(2, FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)
    template_clustering(2, FCPS_SAMPLES.SAMPLE_WING_NUT)
    template_clustering(2, FCPS_SAMPLES.SAMPLE_CHAINLINK)
    template_clustering(7, FCPS_SAMPLES.SAMPLE_HEPTA)
    template_clustering(4, FCPS_SAMPLES.SAMPLE_TETRA)
    template_clustering(2, FCPS_SAMPLES.SAMPLE_ATOM)


def display_fcps_clustering_results():
    (lsun, lsun_clusters) = template_clustering(3, FCPS_SAMPLES.SAMPLE_LSUN, show_result=False)
    (target, target_clusters) = template_clustering(6, FCPS_SAMPLES.SAMPLE_TARGET, show_result=False)
    (two_diamonds, two_diamonds_clusters) = template_clustering(2, FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, show_result=False)
    (wing_nut, wing_nut_clusters) = template_clustering(2, FCPS_SAMPLES.SAMPLE_WING_NUT, show_result=False)
    (chainlink, chainlink_clusters) = template_clustering(2, FCPS_SAMPLES.SAMPLE_CHAINLINK, show_result=False)
    (hepta, hepta_clusters) = template_clustering(7, FCPS_SAMPLES.SAMPLE_HEPTA, show_result=False)
    (tetra, tetra_clusters) = template_clustering(4, FCPS_SAMPLES.SAMPLE_TETRA, show_result=False)
    (atom, atom_clusters) = template_clustering(2, FCPS_SAMPLES.SAMPLE_ATOM, show_result=False)
    
    visualizer = cluster_visualizer(8, 4)
    visualizer.append_clusters(lsun_clusters, lsun, 0)
    visualizer.append_clusters(target_clusters, target, 1)
    visualizer.append_clusters(two_diamonds_clusters, two_diamonds, 2)
    visualizer.append_clusters(wing_nut_clusters, wing_nut, 3)
    visualizer.append_clusters(chainlink_clusters, chainlink, 4)
    visualizer.append_clusters(hepta_clusters, hepta, 5)
    visualizer.append_clusters(tetra_clusters, tetra, 6)
    visualizer.append_clusters(atom_clusters, atom, 7)
    visualizer.show()


cluster_sample1()
cluster_sample2()
cluster_sample3()
cluster_sample4()
cluster_sample5()
cluster_sample7()
cluster_sample8()
cluster_elongate()
cluster_lsun()
cluster_lsun_rebuilt()
cluster_target()
cluster_two_diamonds()
cluster_wing_nut()
cluster_chainlink()
cluster_hepta()
cluster_tetra()
cluster_engy_time()

experiment_execution_time(True)    # C++ code + Python env.

display_fcps_clustering_results()