File: cure_examples.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (133 lines) | stat: -rwxr-xr-x 4,542 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""!

@brief Examples of usage and demonstration of abilities of CURE algorithm in cluster analysis.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""


from pyclustering.utils import read_sample
from pyclustering.utils import timedcall

from pyclustering.samples.definitions import SIMPLE_SAMPLES
from pyclustering.samples.definitions import FCPS_SAMPLES

from pyclustering.cluster import cluster_visualizer
from pyclustering.cluster.cure import cure


def template_clustering(number_clusters, path, number_represent_points=5, compression=0.5, draw=True, ccore_flag=True):
    sample = read_sample(path)
    
    cure_instance = cure(sample, number_clusters, number_represent_points, compression, ccore_flag)
    (ticks, _) = timedcall(cure_instance.process)
    
    clusters = cure_instance.get_clusters()
    representors = cure_instance.get_representors()
    means = cure_instance.get_means()

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")
    #print([len(cluster) for cluster in clusters])

    if draw is True:
        visualizer = cluster_visualizer()

        visualizer.append_clusters(clusters, sample)

        for cluster_index in range(len(clusters)):
            visualizer.append_cluster_attribute(0, cluster_index, representors[cluster_index], '*', 10)
            visualizer.append_cluster_attribute(0, cluster_index, [ means[cluster_index] ], 'o')

        visualizer.show()


def cluster_sample1():
    template_clustering(2, SIMPLE_SAMPLES.SAMPLE_SIMPLE1)

def cluster_sample2():
    template_clustering(3, SIMPLE_SAMPLES.SAMPLE_SIMPLE2)

def cluster_sample3():
    template_clustering(4, SIMPLE_SAMPLES.SAMPLE_SIMPLE3)

def cluster_sample4():
    template_clustering(5, SIMPLE_SAMPLES.SAMPLE_SIMPLE4)

def cluster_sample5():
    template_clustering(4, SIMPLE_SAMPLES.SAMPLE_SIMPLE5)

def cluster_sample6():
    template_clustering(2, SIMPLE_SAMPLES.SAMPLE_SIMPLE6)

def cluster_elongate():
    template_clustering(2, SIMPLE_SAMPLES.SAMPLE_ELONGATE)

def cluster_lsun():
    template_clustering(3, FCPS_SAMPLES.SAMPLE_LSUN, 5, 0.3)
    
def cluster_target():
    template_clustering(6, FCPS_SAMPLES.SAMPLE_TARGET, 10, 0.3)

def cluster_two_diamonds():
    template_clustering(2, FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, 5, 0.3)

def cluster_wing_nut(ccore_flag=True):
    template_clustering(2, FCPS_SAMPLES.SAMPLE_WING_NUT, 4, 0.3, ccore_flag=ccore_flag)
    
def cluster_chainlink():
    template_clustering(2, FCPS_SAMPLES.SAMPLE_CHAINLINK, 30, 0.2)
    
def cluster_hepta():
    template_clustering(7, FCPS_SAMPLES.SAMPLE_HEPTA)
    
def cluster_tetra():
    template_clustering(4, FCPS_SAMPLES.SAMPLE_TETRA)
    
def cluster_engy_time():
    template_clustering(2, FCPS_SAMPLES.SAMPLE_ENGY_TIME, 50, 0.5)

def cluster_golf_ball():
    template_clustering(1, FCPS_SAMPLES.SAMPLE_GOLF_BALL)
    
def cluster_atom():
    "Impossible to obtain parameters that satisfy us, it seems to me that compression = 0.2 is key parameter here, because results of clustering doesn't depend on number of represented points, except 0."
    "Thus the best parameters is following: number of points for representation: [5, 400]; compression: [0.2, 0.204]"
    "Results of clustering is not so dramatically, but clusters are not allocated properly"
    template_clustering(2, FCPS_SAMPLES.SAMPLE_ATOM, 20, 0.2)


def experiment_execution_time(draw, ccore):
    template_clustering(3, FCPS_SAMPLES.SAMPLE_LSUN, 5, 0.3, draw, ccore)
    template_clustering(6, FCPS_SAMPLES.SAMPLE_TARGET, 10, 0.3, draw, ccore)
    template_clustering(2, FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, 5, 0.3, draw, ccore)
    template_clustering(2, FCPS_SAMPLES.SAMPLE_WING_NUT, 1, 1, draw, ccore)
    template_clustering(2, FCPS_SAMPLES.SAMPLE_CHAINLINK, 5, 0.5, draw, ccore)
    template_clustering(4, FCPS_SAMPLES.SAMPLE_TETRA, 5, 0.5, draw, ccore)
    template_clustering(7, FCPS_SAMPLES.SAMPLE_HEPTA, 5, 0.5, draw, ccore)
    template_clustering(2, FCPS_SAMPLES.SAMPLE_ATOM, 20, 0.2)


cluster_sample1()
cluster_sample2()
cluster_sample3()
cluster_sample4()
cluster_sample5()
cluster_sample6()
cluster_elongate()
cluster_lsun()
cluster_target()
cluster_two_diamonds()
cluster_wing_nut()
cluster_chainlink()
cluster_hepta()
cluster_tetra()
cluster_atom()
cluster_engy_time()
cluster_golf_ball()


experiment_execution_time(True, False)
experiment_execution_time(True, True)