1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
"""!
@brief Examples of usage and demonstration of abilities of CURE algorithm in cluster analysis.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
from pyclustering.utils import read_sample
from pyclustering.utils import timedcall
from pyclustering.samples.definitions import SIMPLE_SAMPLES
from pyclustering.samples.definitions import FCPS_SAMPLES
from pyclustering.cluster import cluster_visualizer
from pyclustering.cluster.cure import cure
def template_clustering(number_clusters, path, number_represent_points=5, compression=0.5, draw=True, ccore_flag=True):
sample = read_sample(path)
cure_instance = cure(sample, number_clusters, number_represent_points, compression, ccore_flag)
(ticks, _) = timedcall(cure_instance.process)
clusters = cure_instance.get_clusters()
representors = cure_instance.get_representors()
means = cure_instance.get_means()
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")
#print([len(cluster) for cluster in clusters])
if draw is True:
visualizer = cluster_visualizer()
visualizer.append_clusters(clusters, sample)
for cluster_index in range(len(clusters)):
visualizer.append_cluster_attribute(0, cluster_index, representors[cluster_index], '*', 10)
visualizer.append_cluster_attribute(0, cluster_index, [ means[cluster_index] ], 'o')
visualizer.show()
def cluster_sample1():
template_clustering(2, SIMPLE_SAMPLES.SAMPLE_SIMPLE1)
def cluster_sample2():
template_clustering(3, SIMPLE_SAMPLES.SAMPLE_SIMPLE2)
def cluster_sample3():
template_clustering(4, SIMPLE_SAMPLES.SAMPLE_SIMPLE3)
def cluster_sample4():
template_clustering(5, SIMPLE_SAMPLES.SAMPLE_SIMPLE4)
def cluster_sample5():
template_clustering(4, SIMPLE_SAMPLES.SAMPLE_SIMPLE5)
def cluster_sample6():
template_clustering(2, SIMPLE_SAMPLES.SAMPLE_SIMPLE6)
def cluster_elongate():
template_clustering(2, SIMPLE_SAMPLES.SAMPLE_ELONGATE)
def cluster_lsun():
template_clustering(3, FCPS_SAMPLES.SAMPLE_LSUN, 5, 0.3)
def cluster_target():
template_clustering(6, FCPS_SAMPLES.SAMPLE_TARGET, 10, 0.3)
def cluster_two_diamonds():
template_clustering(2, FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, 5, 0.3)
def cluster_wing_nut(ccore_flag=True):
template_clustering(2, FCPS_SAMPLES.SAMPLE_WING_NUT, 4, 0.3, ccore_flag=ccore_flag)
def cluster_chainlink():
template_clustering(2, FCPS_SAMPLES.SAMPLE_CHAINLINK, 30, 0.2)
def cluster_hepta():
template_clustering(7, FCPS_SAMPLES.SAMPLE_HEPTA)
def cluster_tetra():
template_clustering(4, FCPS_SAMPLES.SAMPLE_TETRA)
def cluster_engy_time():
template_clustering(2, FCPS_SAMPLES.SAMPLE_ENGY_TIME, 50, 0.5)
def cluster_golf_ball():
template_clustering(1, FCPS_SAMPLES.SAMPLE_GOLF_BALL)
def cluster_atom():
"Impossible to obtain parameters that satisfy us, it seems to me that compression = 0.2 is key parameter here, because results of clustering doesn't depend on number of represented points, except 0."
"Thus the best parameters is following: number of points for representation: [5, 400]; compression: [0.2, 0.204]"
"Results of clustering is not so dramatically, but clusters are not allocated properly"
template_clustering(2, FCPS_SAMPLES.SAMPLE_ATOM, 20, 0.2)
def experiment_execution_time(draw, ccore):
template_clustering(3, FCPS_SAMPLES.SAMPLE_LSUN, 5, 0.3, draw, ccore)
template_clustering(6, FCPS_SAMPLES.SAMPLE_TARGET, 10, 0.3, draw, ccore)
template_clustering(2, FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, 5, 0.3, draw, ccore)
template_clustering(2, FCPS_SAMPLES.SAMPLE_WING_NUT, 1, 1, draw, ccore)
template_clustering(2, FCPS_SAMPLES.SAMPLE_CHAINLINK, 5, 0.5, draw, ccore)
template_clustering(4, FCPS_SAMPLES.SAMPLE_TETRA, 5, 0.5, draw, ccore)
template_clustering(7, FCPS_SAMPLES.SAMPLE_HEPTA, 5, 0.5, draw, ccore)
template_clustering(2, FCPS_SAMPLES.SAMPLE_ATOM, 20, 0.2)
cluster_sample1()
cluster_sample2()
cluster_sample3()
cluster_sample4()
cluster_sample5()
cluster_sample6()
cluster_elongate()
cluster_lsun()
cluster_target()
cluster_two_diamonds()
cluster_wing_nut()
cluster_chainlink()
cluster_hepta()
cluster_tetra()
cluster_atom()
cluster_engy_time()
cluster_golf_ball()
experiment_execution_time(True, False)
experiment_execution_time(True, True)
|