1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
"""!
@brief Examples of usage and demonstration of abilities of K-Means algorithm in cluster analysis.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import random
from pyclustering.samples.definitions import SIMPLE_SAMPLES, FCPS_SAMPLES, FAMOUS_SAMPLES
from pyclustering.cluster import cluster_visualizer_multidim
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
from pyclustering.cluster.kmeans import kmeans, kmeans_observer, kmeans_visualizer
from pyclustering.utils import read_sample
from pyclustering.utils import timedcall
from pyclustering.utils.metric import distance_metric, type_metric
def template_clustering(start_centers, path, tolerance = 0.25, ccore = False):
sample = read_sample(path)
dimension = len(sample[0])
metric = distance_metric(type_metric.MANHATTAN)
observer = kmeans_observer()
kmeans_instance = kmeans(sample, start_centers, tolerance, ccore, observer=observer, metric=metric)
(ticks, _) = timedcall(kmeans_instance.process)
clusters = kmeans_instance.get_clusters()
centers = kmeans_instance.get_centers()
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")
visualizer = cluster_visualizer_multidim()
visualizer.append_clusters(clusters, sample)
visualizer.show()
if dimension > 3:
kmeans_visualizer.show_clusters(sample, clusters, centers, start_centers)
kmeans_visualizer.animate_cluster_allocation(sample, observer)
def cluster_sample1():
start_centers = [[4.7, 5.9], [5.7, 6.5]]
template_clustering(start_centers, SIMPLE_SAMPLES.SAMPLE_SIMPLE1)
def cluster_sample2():
start_centers = [[3.5, 4.8], [6.9, 7], [7.5, 0.5]]
template_clustering(start_centers, SIMPLE_SAMPLES.SAMPLE_SIMPLE2)
def cluster_sample3():
start_centers = [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]]
template_clustering(start_centers, SIMPLE_SAMPLES.SAMPLE_SIMPLE3)
def cluster_sample4():
start_centers = [[1.5, 0.0], [1.5, 2.0], [1.5, 4.0], [1.5, 6.0], [1.5, 8.0]]
template_clustering(start_centers, SIMPLE_SAMPLES.SAMPLE_SIMPLE4)
def cluster_sample5():
start_centers = [[0.0, 1.0], [0.0, 0.0], [1.0, 1.0], [1.0, 0.0]]
template_clustering(start_centers, SIMPLE_SAMPLES.SAMPLE_SIMPLE5)
def cluster_sample7():
start_centers = [[-3.0], [2.5]]
template_clustering(start_centers, SIMPLE_SAMPLES.SAMPLE_SIMPLE7)
def cluster_sample8():
start_centers = [[-4.0], [3.1], [6.1], [12.0]]
template_clustering(start_centers, SIMPLE_SAMPLES.SAMPLE_SIMPLE8)
def cluster_elongate():
"Not so applicable for this sample"
start_centers = [[1.0, 4.5], [3.1, 2.7]]
template_clustering(start_centers, SIMPLE_SAMPLES.SAMPLE_ELONGATE)
def cluster_lsun():
"Not so applicable for this sample"
start_centers = [[1.0, 3.5], [2.0, 0.5], [3.0, 3.0]]
template_clustering(start_centers, FCPS_SAMPLES.SAMPLE_LSUN)
def cluster_target():
"Not so applicable for this sample"
start_centers = [[0.2, 0.2], [0.0, -2.0], [3.0, -3.0], [3.0, 3.0], [-3.0, 3.0], [-3.0, -3.0]]
template_clustering(start_centers, FCPS_SAMPLES.SAMPLE_TARGET)
def cluster_two_diamonds():
start_centers = [[0.8, 0.2], [3.0, 0.0]]
template_clustering(start_centers, FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)
def cluster_wing_nut():
"Almost good!"
start_centers = [[-1.5, 1.5], [1.5, 1.5]]
template_clustering(start_centers, FCPS_SAMPLES.SAMPLE_WING_NUT)
def cluster_chainlink():
start_centers = [[1.1, -1.7, 1.1], [-1.4, 2.5, -1.2]]
template_clustering(start_centers, FCPS_SAMPLES.SAMPLE_CHAINLINK)
def cluster_hepta():
start_centers = [[0.0, 0.0, 0.0], [3.0, 0.0, 0.0], [-2.0, 0.0, 0.0], [0.0, 3.0, 0.0], [0.0, -3.0, 0.0], [0.0, 0.0, 2.5], [0.0, 0.0, -2.5]]
template_clustering(start_centers, FCPS_SAMPLES.SAMPLE_HEPTA)
def cluster_tetra():
start_centers = [[1, 0, 0], [0, 1, 0], [0, -1, 0], [-1, 0, 0]]
template_clustering(start_centers, FCPS_SAMPLES.SAMPLE_TETRA)
def cluster_engy_time():
start_centers = [[0.5, 0.5], [2.3, 2.9]]
template_clustering(start_centers, FCPS_SAMPLES.SAMPLE_ENGY_TIME)
def cluster_iris():
start_centers = kmeans_plusplus_initializer(read_sample(FAMOUS_SAMPLES.SAMPLE_IRIS), 4).initialize()
template_clustering(start_centers, FAMOUS_SAMPLES.SAMPLE_IRIS)
def experiment_execution_time(ccore = False):
template_clustering([[3.7, 5.5], [6.7, 7.5]], SIMPLE_SAMPLES.SAMPLE_SIMPLE1, ccore)
template_clustering([[3.5, 4.8], [6.9, 7], [7.5, 0.5]], SIMPLE_SAMPLES.SAMPLE_SIMPLE2, ccore)
template_clustering([[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]], SIMPLE_SAMPLES.SAMPLE_SIMPLE3, ccore)
template_clustering([[1.5, 0.0], [1.5, 2.0], [1.5, 4.0], [1.5, 6.0], [1.5, 8.0]], SIMPLE_SAMPLES.SAMPLE_SIMPLE4, ccore)
template_clustering([[0.0, 1.0], [0.0, 0.0], [1.0, 1.0], [1.0, 0.0]], SIMPLE_SAMPLES.SAMPLE_SIMPLE5, ccore)
template_clustering([[1.0, 4.5], [3.1, 2.7]], SIMPLE_SAMPLES.SAMPLE_ELONGATE, ccore)
template_clustering([[1.0, 3.5], [2.0, 0.5], [3.0, 3.0]], FCPS_SAMPLES.SAMPLE_LSUN, ccore)
template_clustering([[0.2, 0.2], [0.0, -2.0], [3.0, -3.0], [3.0, 3.0], [-3.0, 3.0], [-3.0, -3.0]], FCPS_SAMPLES.SAMPLE_TARGET, ccore)
template_clustering([[0.8, 0.2], [3.0, 0.0]], FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, ccore)
template_clustering([[-1.5, 1.5], [1.5, 1.5]], FCPS_SAMPLES.SAMPLE_WING_NUT, ccore)
template_clustering([[1.1, -1.7, 1.1], [-1.4, 2.5, -1.2]], FCPS_SAMPLES.SAMPLE_CHAINLINK, ccore)
template_clustering([[0.0, 0.0, 0.0], [3.0, 0.0, 0.0], [-2.0, 0.0, 0.0], [0.0, 3.0, 0.0], [0.0, -3.0, 0.0], [0.0, 0.0, 2.5], [0.0, 0.0, -2.5]], FCPS_SAMPLES.SAMPLE_HEPTA, ccore)
template_clustering([[1, 0, 0], [0, 1, 0], [0, -1, 0], [-1, 0, 0]], FCPS_SAMPLES.SAMPLE_TETRA, ccore)
template_clustering([[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]], FCPS_SAMPLES.SAMPLE_ATOM, ccore)
template_clustering([[0.5, 0.5], [2.3, 2.9]], FCPS_SAMPLES.SAMPLE_ENGY_TIME, ccore)
def clustering_random_points(amount_points, amount_centers, ccore):
sample = [ [ random.random(), random.random() ] for _ in range(amount_points) ]
centers = [ [ random.random(), random.random() ] for _ in range(amount_centers) ]
kmeans_instance = kmeans(sample, centers, 0.0001, ccore)
(ticks, _) = timedcall(kmeans_instance.process)
print("Execution time ("+ str(amount_points) +" 2D-points):", ticks)
def performance_measure_random_points(ccore):
clustering_random_points(1000, 5, ccore)
clustering_random_points(2000, 5, ccore)
clustering_random_points(3000, 5, ccore)
clustering_random_points(4000, 5, ccore)
clustering_random_points(5000, 5, ccore)
clustering_random_points(10000, 5, ccore)
clustering_random_points(20000, 5, ccore)
cluster_sample1()
cluster_sample2()
cluster_sample3()
cluster_sample4()
cluster_sample5()
cluster_sample7()
cluster_sample8()
cluster_elongate()
cluster_lsun()
cluster_target()
cluster_two_diamonds()
cluster_wing_nut()
cluster_chainlink()
cluster_hepta()
cluster_tetra()
cluster_engy_time()
cluster_iris()
experiment_execution_time(False) # Python code
experiment_execution_time(True) # C++ code + Python env.
performance_measure_random_points(False)
|