1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
"""!
@brief Examples of usage and demonstration of abilities of K-Medoids algorithm in cluster analysis.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
from pyclustering.samples.definitions import SIMPLE_SAMPLES, FCPS_SAMPLES
from pyclustering.cluster import cluster_visualizer
from pyclustering.cluster.kmedoids import kmedoids
from pyclustering.utils import read_sample, calculate_distance_matrix
from pyclustering.utils import timedcall, distance_metric, type_metric
def template_clustering(start_medoids, path, tolerance=0.25, show=True, **kwargs):
ccore = kwargs.get('ccore', True)
data_type = kwargs.get('data_type', 'points')
original_data = read_sample(path)
sample = original_data
if data_type == 'distance_matrix':
sample = calculate_distance_matrix(sample)
metric = distance_metric(type_metric.EUCLIDEAN_SQUARE, data=sample)
kmedoids_instance = kmedoids(sample, start_medoids, tolerance, metric=metric, ccore=ccore, data_type=data_type)
(ticks, result) = timedcall(kmedoids_instance.process)
clusters = kmedoids_instance.get_clusters()
print(clusters)
medoids = kmedoids_instance.get_medoids()
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")
if show is True:
visualizer = cluster_visualizer(1)
visualizer.append_clusters(clusters, original_data, 0)
visualizer.append_cluster([original_data[index] for index in start_medoids], marker='*', markersize=15)
visualizer.append_cluster(medoids, data=original_data, marker='*', markersize=15)
visualizer.show()
return original_data, clusters
def cluster_sample1():
template_clustering([2, 9], SIMPLE_SAMPLES.SAMPLE_SIMPLE1)
def cluster_sample2():
template_clustering([3, 12, 20], SIMPLE_SAMPLES.SAMPLE_SIMPLE2)
def cluster_sample3():
template_clustering([4, 12, 25, 37], SIMPLE_SAMPLES.SAMPLE_SIMPLE3)
def cluster_sample4():
template_clustering([4, 15, 30, 40, 50], SIMPLE_SAMPLES.SAMPLE_SIMPLE4)
def cluster_sample5():
template_clustering([4, 18, 34, 55], SIMPLE_SAMPLES.SAMPLE_SIMPLE5)
def cluster_elongate():
template_clustering([8, 56], SIMPLE_SAMPLES.SAMPLE_ELONGATE)
def cluster_lsun():
#template_clustering([10, 275, 385], FCPS_SAMPLES.SAMPLE_LSUN)
template_clustering([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], FCPS_SAMPLES.SAMPLE_LSUN, data_type='distance_matrix')
def cluster_target():
template_clustering([10, 160, 310, 460, 560, 700], FCPS_SAMPLES.SAMPLE_TARGET)
def cluster_two_diamonds():
template_clustering([10, 650], FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)
def cluster_wing_nut():
template_clustering([19, 823], FCPS_SAMPLES.SAMPLE_WING_NUT)
def cluster_chainlink():
template_clustering([30, 900], FCPS_SAMPLES.SAMPLE_CHAINLINK)
def cluster_hepta():
template_clustering([0, 35, 86, 93, 125, 171, 194], FCPS_SAMPLES.SAMPLE_HEPTA)
def cluster_tetra():
template_clustering([0, 131, 214, 265], FCPS_SAMPLES.SAMPLE_TETRA)
def cluster_atom():
template_clustering([0, 650], FCPS_SAMPLES.SAMPLE_ATOM)
def cluster_engy_time():
template_clustering([10, 3000], FCPS_SAMPLES.SAMPLE_ENGY_TIME)
def display_fcps_clustering_results():
(lsun, lsun_clusters) = template_clustering([10, 275, 385], FCPS_SAMPLES.SAMPLE_LSUN, 0.1, False)
(target, target_clusters) = template_clustering([10, 160, 310, 460, 560, 700], FCPS_SAMPLES.SAMPLE_TARGET, 0.1, False)
(two_diamonds, two_diamonds_clusters) = template_clustering([10, 650], FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, 0.1, False)
(wing_nut, wing_nut_clusters) = template_clustering([19, 823], FCPS_SAMPLES.SAMPLE_WING_NUT, 0.1, False)
(chainlink, chainlink_clusters) = template_clustering([30, 900], FCPS_SAMPLES.SAMPLE_CHAINLINK, 0.1, False)
(hepta, hepta_clusters) = template_clustering([0, 35, 86, 93, 125, 171, 194], FCPS_SAMPLES.SAMPLE_HEPTA, 0.1, False)
(tetra, tetra_clusters) = template_clustering([0, 131, 214, 265], FCPS_SAMPLES.SAMPLE_TETRA, 0.1, False)
(atom, atom_clusters) = template_clustering([0, 650], FCPS_SAMPLES.SAMPLE_ATOM, 0.1, False)
visualizer = cluster_visualizer(8, 4)
visualizer.append_clusters(lsun_clusters, lsun, 0)
visualizer.append_clusters(target_clusters, target, 1)
visualizer.append_clusters(two_diamonds_clusters, two_diamonds, 2)
visualizer.append_clusters(wing_nut_clusters, wing_nut, 3)
visualizer.append_clusters(chainlink_clusters, chainlink, 4)
visualizer.append_clusters(hepta_clusters, hepta, 5)
visualizer.append_clusters(tetra_clusters, tetra, 6)
visualizer.append_clusters(atom_clusters, atom, 7)
visualizer.show()
cluster_sample1()
cluster_sample2()
cluster_sample3()
cluster_sample4()
cluster_sample5()
cluster_elongate()
cluster_lsun()
cluster_target()
cluster_two_diamonds()
cluster_wing_nut()
cluster_chainlink()
cluster_hepta()
cluster_tetra()
cluster_atom()
cluster_engy_time()
display_fcps_clustering_results()
|