File: kmedoids_examples.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (134 lines) | stat: -rwxr-xr-x 5,154 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""!

@brief Examples of usage and demonstration of abilities of K-Medoids algorithm in cluster analysis.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""

from pyclustering.samples.definitions import SIMPLE_SAMPLES, FCPS_SAMPLES

from pyclustering.cluster import cluster_visualizer
from pyclustering.cluster.kmedoids import kmedoids

from pyclustering.utils import read_sample, calculate_distance_matrix
from pyclustering.utils import timedcall, distance_metric, type_metric


def template_clustering(start_medoids, path, tolerance=0.25, show=True, **kwargs):
    ccore = kwargs.get('ccore', True)
    data_type = kwargs.get('data_type', 'points')

    original_data = read_sample(path)
    sample = original_data
    if data_type == 'distance_matrix':
        sample = calculate_distance_matrix(sample)

    metric = distance_metric(type_metric.EUCLIDEAN_SQUARE, data=sample)
    kmedoids_instance = kmedoids(sample, start_medoids, tolerance, metric=metric, ccore=ccore, data_type=data_type)
    (ticks, result) = timedcall(kmedoids_instance.process)
    
    clusters = kmedoids_instance.get_clusters()
    print(clusters)
    medoids = kmedoids_instance.get_medoids()
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    if show is True:
        visualizer = cluster_visualizer(1)
        visualizer.append_clusters(clusters, original_data, 0)
        visualizer.append_cluster([original_data[index] for index in start_medoids], marker='*', markersize=15)
        visualizer.append_cluster(medoids, data=original_data, marker='*', markersize=15)
        visualizer.show()
    
    return original_data, clusters


def cluster_sample1():
    template_clustering([2, 9], SIMPLE_SAMPLES.SAMPLE_SIMPLE1)

def cluster_sample2():
    template_clustering([3, 12, 20], SIMPLE_SAMPLES.SAMPLE_SIMPLE2)
    
def cluster_sample3():
    template_clustering([4, 12, 25, 37], SIMPLE_SAMPLES.SAMPLE_SIMPLE3)
    
def cluster_sample4():
    template_clustering([4, 15, 30, 40, 50], SIMPLE_SAMPLES.SAMPLE_SIMPLE4)

def cluster_sample5():
    template_clustering([4, 18, 34, 55], SIMPLE_SAMPLES.SAMPLE_SIMPLE5)
        
def cluster_elongate():
    template_clustering([8, 56], SIMPLE_SAMPLES.SAMPLE_ELONGATE)

def cluster_lsun():
    #template_clustering([10, 275, 385], FCPS_SAMPLES.SAMPLE_LSUN)
    template_clustering([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], FCPS_SAMPLES.SAMPLE_LSUN, data_type='distance_matrix')

def cluster_target():
    template_clustering([10, 160, 310, 460, 560, 700], FCPS_SAMPLES.SAMPLE_TARGET)

def cluster_two_diamonds():
    template_clustering([10, 650], FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)

def cluster_wing_nut():
    template_clustering([19, 823], FCPS_SAMPLES.SAMPLE_WING_NUT)
    
def cluster_chainlink():
    template_clustering([30, 900], FCPS_SAMPLES.SAMPLE_CHAINLINK)
    
def cluster_hepta():
    template_clustering([0, 35, 86, 93, 125, 171, 194], FCPS_SAMPLES.SAMPLE_HEPTA)
    
def cluster_tetra():
    template_clustering([0, 131, 214, 265], FCPS_SAMPLES.SAMPLE_TETRA)

def cluster_atom():
    template_clustering([0, 650], FCPS_SAMPLES.SAMPLE_ATOM)

def cluster_engy_time():
    template_clustering([10, 3000], FCPS_SAMPLES.SAMPLE_ENGY_TIME)


def display_fcps_clustering_results():
    (lsun, lsun_clusters) = template_clustering([10, 275, 385], FCPS_SAMPLES.SAMPLE_LSUN, 0.1, False)
    (target, target_clusters) = template_clustering([10, 160, 310, 460, 560, 700], FCPS_SAMPLES.SAMPLE_TARGET, 0.1, False)
    (two_diamonds, two_diamonds_clusters) = template_clustering([10, 650], FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, 0.1, False)
    (wing_nut, wing_nut_clusters) = template_clustering([19, 823], FCPS_SAMPLES.SAMPLE_WING_NUT, 0.1, False)
    (chainlink, chainlink_clusters) = template_clustering([30, 900], FCPS_SAMPLES.SAMPLE_CHAINLINK, 0.1, False)
    (hepta, hepta_clusters) = template_clustering([0, 35, 86, 93, 125, 171, 194], FCPS_SAMPLES.SAMPLE_HEPTA, 0.1, False)
    (tetra, tetra_clusters) = template_clustering([0, 131, 214, 265], FCPS_SAMPLES.SAMPLE_TETRA, 0.1, False)
    (atom, atom_clusters) = template_clustering([0, 650], FCPS_SAMPLES.SAMPLE_ATOM, 0.1, False)
    
    visualizer = cluster_visualizer(8, 4)
    visualizer.append_clusters(lsun_clusters, lsun, 0)
    visualizer.append_clusters(target_clusters, target, 1)
    visualizer.append_clusters(two_diamonds_clusters, two_diamonds, 2)
    visualizer.append_clusters(wing_nut_clusters, wing_nut, 3)
    visualizer.append_clusters(chainlink_clusters, chainlink, 4)
    visualizer.append_clusters(hepta_clusters, hepta, 5)
    visualizer.append_clusters(tetra_clusters, tetra, 6)
    visualizer.append_clusters(atom_clusters, atom, 7)
    visualizer.show()


cluster_sample1()
cluster_sample2()
cluster_sample3()
cluster_sample4()
cluster_sample5()
cluster_elongate()
cluster_lsun()
cluster_target()
cluster_two_diamonds()
cluster_wing_nut()
cluster_chainlink()
cluster_hepta()
cluster_tetra()
cluster_atom()
cluster_engy_time()


display_fcps_clustering_results()