File: optics_examples.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (166 lines) | stat: -rwxr-xr-x 5,371 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""!

@brief Examples of usage and demonstration of abilities of OPTICS algorithm in cluster analysis.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""


import random

from pyclustering.cluster import cluster_visualizer
from pyclustering.cluster.optics import optics, ordering_analyser, ordering_visualizer

from pyclustering.utils import read_sample, timedcall

from pyclustering.samples.definitions import SIMPLE_SAMPLES, FCPS_SAMPLES


def template_clustering(path_sample, eps, minpts, amount_clusters = None, visualize = True, ccore = False):
    sample = read_sample(path_sample)
    
    optics_instance = optics(sample, eps, minpts, amount_clusters, ccore)
    (ticks, _) = timedcall(optics_instance.process)
    
    print("Sample: ", path_sample, "\t\tExecution time: ", ticks, "\n")
    
    if (visualize is True):
        clusters = optics_instance.get_clusters()
        noise = optics_instance.get_noise()

        visualizer = cluster_visualizer()
        visualizer.append_clusters(clusters, sample)
        visualizer.append_cluster(noise, sample, marker = 'x')
        visualizer.show()
    
        ordering = optics_instance.get_ordering()
        analyser = ordering_analyser(ordering)
        
        ordering_visualizer.show_ordering_diagram(analyser, amount_clusters)
    
    
def cluster_sample1():
    template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 0.5, 3)
    
def cluster_sample2():
    template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 3.0, 3)
    
def cluster_sample3():
    template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 0.7, 3)
    
def cluster_sample4():
    template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, 0.7, 3)

def cluster_sample5():
    template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, 0.7, 3)
    
def cluster_sample6():
    template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE6, 1.0, 3)
 
def cluster_elongate():
    template_clustering(SIMPLE_SAMPLES.SAMPLE_ELONGATE, 0.5, 3)

def cluster_lsun():
    template_clustering(FCPS_SAMPLES.SAMPLE_LSUN, 0.5, 3)

def cluster_lsun_radius_calculation():
    template_clustering(FCPS_SAMPLES.SAMPLE_LSUN, 1.0, 3, 3)

def cluster_target():
    template_clustering(FCPS_SAMPLES.SAMPLE_TARGET, 0.5, 2)

def cluster_target_radius_calculation():
    template_clustering(FCPS_SAMPLES.SAMPLE_TARGET, 10.0, 2, 6)

def cluster_two_diamonds():
    template_clustering(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, 0.15, 7)

def cluster_two_diamonds_radius_calculation():
    template_clustering(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, 1.0, 7, 2)

def cluster_wing_nut():
    template_clustering(FCPS_SAMPLES.SAMPLE_WING_NUT, 0.25, 2)

def cluster_wing_nut_radius_calculation():
    template_clustering(FCPS_SAMPLES.SAMPLE_WING_NUT, 1.0, 2, 2)

def cluster_chainlink():
    template_clustering(FCPS_SAMPLES.SAMPLE_CHAINLINK, 0.15, 3)
    
def cluster_hepta():
    template_clustering(FCPS_SAMPLES.SAMPLE_HEPTA, 1, 3)
    
def cluster_golf_ball():
    template_clustering(FCPS_SAMPLES.SAMPLE_GOLF_BALL, 0.5, 3)
    
def cluster_atom():
    template_clustering(FCPS_SAMPLES.SAMPLE_ATOM, 15, 3)

def cluster_tetra():
    template_clustering(FCPS_SAMPLES.SAMPLE_TETRA, 0.4, 3)
     
def cluster_engy_time():
    template_clustering(FCPS_SAMPLES.SAMPLE_ENGY_TIME, 0.2, 20)


def experiment_execution_time(ccore):
    template_clustering(FCPS_SAMPLES.SAMPLE_LSUN, 1.0, 3, 3, False, ccore)
    template_clustering(FCPS_SAMPLES.SAMPLE_TARGET, 10.0, 2, 6, False, ccore)
    template_clustering(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, 1.0, 7, 2, False, ccore)
    template_clustering(FCPS_SAMPLES.SAMPLE_CHAINLINK, 2.0, 3, 2, False, ccore)
    template_clustering(FCPS_SAMPLES.SAMPLE_WING_NUT, 1.0, 2, 2, False, ccore)
    template_clustering(FCPS_SAMPLES.SAMPLE_HEPTA, 1, 3, None, False, ccore)
    template_clustering(FCPS_SAMPLES.SAMPLE_TETRA, 1.0, 3, 4, False, ccore)
    template_clustering(FCPS_SAMPLES.SAMPLE_ATOM, 30, 3, 2, False, ccore)


def clustering_random_points(amount, ccore):
    sample = [ [ random.random(), random.random() ] for _ in range(amount) ]
    
    optics_instance = optics(sample, 0.05, 20, None, ccore)
    (ticks, _) = timedcall(optics_instance.process)
    
    print("Execution time ("+ str(amount) +" 2D-points):", ticks)


def performance_measure_random_points(ccore):
    clustering_random_points(1000, ccore)
    clustering_random_points(2000, ccore)
    clustering_random_points(3000, ccore)
    clustering_random_points(4000, ccore)
    clustering_random_points(5000, ccore)
    clustering_random_points(10000, ccore)
    clustering_random_points(20000, ccore)


cluster_sample1()
cluster_sample2()
cluster_sample3()
cluster_sample4()
cluster_sample5()
cluster_sample6()
cluster_elongate()
cluster_lsun()
cluster_lsun_radius_calculation()
cluster_target()
cluster_target_radius_calculation()
cluster_two_diamonds()
cluster_two_diamonds_radius_calculation()
cluster_wing_nut()
cluster_wing_nut_radius_calculation()
cluster_chainlink()
cluster_hepta()
cluster_golf_ball()
cluster_atom()
cluster_tetra()
cluster_engy_time()


experiment_execution_time(False)
experiment_execution_time(True)

performance_measure_random_points(False)
performance_measure_random_points(True)