1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
"""!
@brief Examples of usage and demonstration of abilities of SYNC-SOM algorithm in cluster analysis.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
from random import random;
from pyclustering.cluster import cluster_visualizer;
from pyclustering.cluster.syncsom import syncsom;
from pyclustering.samples.definitions import SIMPLE_SAMPLES;
from pyclustering.samples.definitions import FCPS_SAMPLES;
from pyclustering.utils import read_sample, draw_dynamics;
from pyclustering.utils import timedcall;
def template_clustering(file, map_size, radius, sync_order = 0.999, show_dyn = False, show_layer1 = False, show_layer2 = False, show_clusters = True):
# Read sample
sample = read_sample(file);
# Create network
network = syncsom(sample, map_size[0], map_size[1], radius);
# Run processing
(ticks, (dyn_time, dyn_phase)) = timedcall(network.process, show_dyn, sync_order);
print("Sample: ", file, "\t\tExecution time: ", ticks, "\n");
# Show dynamic of the last layer.
if (show_dyn == True):
draw_dynamics(dyn_time, dyn_phase, x_title = "Time", y_title = "Phase", y_lim = [0, 3.14]);
if (show_clusters == True):
clusters = network.get_som_clusters();
visualizer = cluster_visualizer();
visualizer.append_clusters(clusters, network.som_layer.weights);
visualizer.show();
# Show network stuff.
if (show_layer1 == True):
network.show_som_layer();
if (show_layer2 == True):
network.show_sync_layer();
if (show_clusters == True):
clusters = network.get_clusters();
visualizer = cluster_visualizer();
visualizer.append_clusters(clusters, sample);
visualizer.show();
def cluster_simple1():
template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [4, 4], 1.0, 0.999, True, True, True, True);
def cluster_simple1_as_som():
template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [1, 2], 1.0, 0.999, True, True, True, True);
def cluster_simple2():
template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [4, 4], 1.0, 0.999, True, True, True, True);
def cluster_simple2_as_som():
template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [1, 3], 1.0, 0.999, True, True, True, True);
def cluster_simple3():
template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [5, 5], 1.0, 0.999, True, True, True, True);
def cluster_simple4():
template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, [5, 5], 1.0, 0.999, True, True, True);
def cluster_simple5():
template_clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [5, 5], 1.0, 0.999, True, True, True);
def cluster_lsun():
template_clustering(FCPS_SAMPLES.SAMPLE_LSUN, [9, 9], 0.45, 0.999, True, True, True);
def cluster_target():
template_clustering(FCPS_SAMPLES.SAMPLE_TARGET, [9, 9], 0.9, 0.999, True, True, True);
def cluster_two_diamonds():
template_clustering(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, [10, 10], 0.15, 0.999, True, True, True);
def cluster_wing_nut():
template_clustering(FCPS_SAMPLES.SAMPLE_WING_NUT, [10, 10], 0.25, 0.999, True, True, True);
def cluster_chainlink():
template_clustering(FCPS_SAMPLES.SAMPLE_CHAINLINK, [10, 10], 0.5, 0.999, True, True, True);
def cluster_hepta():
template_clustering(FCPS_SAMPLES.SAMPLE_HEPTA, [7, 7], 1.0, 0.999, True, True, True);
def cluster_tetra():
template_clustering(FCPS_SAMPLES.SAMPLE_TETRA, [7, 7], 0.4, 0.998, True, True, True);
def experiment_execution_time():
template_clustering(FCPS_SAMPLES.SAMPLE_LSUN, [4, 4], 0.45, 0.999, False, False, False, False);
template_clustering(FCPS_SAMPLES.SAMPLE_TARGET, [4, 4], 0.9, 0.998, False, False, False, False);
template_clustering(FCPS_SAMPLES.SAMPLE_WING_NUT, [4, 4], 0.25, 0.999, False, False, False, False);
template_clustering(FCPS_SAMPLES.SAMPLE_CHAINLINK, [4, 4], 0.5, 0.998, False, False, False, False);
template_clustering(FCPS_SAMPLES.SAMPLE_TETRA, [4, 4], 0.4, 0.998, False, False, False, False);
template_clustering(FCPS_SAMPLES.SAMPLE_HEPTA, [6, 6], 1.0, 0.998, False, False, False, False);
template_clustering(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, [4, 4], 0.15, 0.998, False, False, False, False);
template_clustering(FCPS_SAMPLES.SAMPLE_ATOM, [4, 4], 15, 0.998, False, False, False, False);
def experiment_execution_one_cluster_dependence(layer_first_size, radius, order):
print("Experiment: map size =", layer_first_size[0] * layer_first_size[1], "radius =", radius, "order =", order);
cluster_sizes = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150];
for cluster_size in cluster_sizes:
# generate data sets
dataset = [];
dataset += [ [random(), random()] for _ in range(cluster_size) ];
general_value = 0.0;
amount_attempt = 5;
for _ in range(amount_attempt):
network = syncsom(dataset, layer_first_size[0], layer_first_size[1], radius);
(ticks, (dyn_time, dyn_phase)) = timedcall(network.process, False, order);
general_value += ticks;
print("Sample: ", cluster_size, "\t\tExecution time: ", general_value / float(amount_attempt));
print("\n");
cluster_simple1();
cluster_simple1_as_som();
cluster_simple2();
cluster_simple2_as_som();
cluster_simple3();
cluster_simple4();
cluster_simple5();
cluster_lsun();
cluster_target();
cluster_two_diamonds();
cluster_chainlink();
cluster_hepta();
cluster_tetra();
experiment_execution_time();
experiment_execution_one_cluster_dependence([5, 5], 0.6, 0.998);
experiment_execution_one_cluster_dependence([6, 6], 0.6, 0.998);
experiment_execution_one_cluster_dependence([7, 7], 0.6, 0.998);
experiment_execution_one_cluster_dependence([8, 8], 0.6, 0.998);
experiment_execution_one_cluster_dependence([9, 9], 0.6, 0.998);
experiment_execution_one_cluster_dependence([10, 10], 0.6, 0.998);
|