1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
"""!
@brief The module contains K-Means algorithm and other related services.
@details Implementation based on paper @cite inproceedings::kmeans::1.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import copy
import numpy
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import pyclustering.core.kmeans_wrapper as wrapper
from pyclustering.core.wrapper import ccore_library
from pyclustering.core.metric_wrapper import metric_wrapper
from pyclustering.cluster.encoder import type_encoding
from pyclustering.cluster import cluster_visualizer
from pyclustering.utils.metric import distance_metric, type_metric
class kmeans_observer:
"""!
@brief Observer of K-Means algorithm that is used to collect information about clustering process on each iteration of the algorithm.
@see kmeans
"""
def __init__(self):
"""!
@brief Initializer of observer of K-Means algorithm.
"""
self.__evolution_clusters = []
self.__evolution_centers = []
self.__initial_centers = []
def __len__(self):
"""!
@brief Returns amount of steps that were observer during clustering process in K-Means algorithm.
"""
return len(self.__evolution_clusters)
def notify(self, clusters, centers):
"""!
@brief This method is called by K-Means algorithm to notify about changes.
@param[in] clusters (array_like): Allocated clusters by K-Means algorithm.
@param[in] centers (array_like): Allocated centers by K-Means algorithm.
"""
self.__evolution_clusters.append(clusters)
self.__evolution_centers.append(centers)
def set_evolution_centers(self, evolution_centers):
"""!
@brief Set evolution of changes of centers during clustering process.
@param[in] evolution_centers (array_like): Evolution of changes of centers during clustering process.
"""
self.__evolution_centers = evolution_centers
def get_centers(self, iteration):
"""!
@brief Get method to return centers at specific iteration of clustering process.
@param[in] iteration (uint): Clustering process iteration at which centers are required.
@return (array_like) Centers at specific iteration.
"""
return self.__evolution_centers[iteration]
def set_evolution_clusters(self, evolution_clusters):
"""!
@brief Set evolution of changes of centers during clustering process.
@param[in] evolution_clusters (array_like): Evolution of changes of clusters during clustering process.
"""
self.__evolution_clusters = evolution_clusters
def get_clusters(self, iteration):
"""!
@brief Get method to return allocated clusters at specific iteration of clustering process.
@param[in] iteration (uint): Clustering process iteration at which clusters are required.
@return (array_like) Clusters at specific iteration.
"""
return self.__evolution_clusters[iteration]
class kmeans_visualizer:
"""!
@brief Visualizer of K-Means algorithm's results.
@details K-Means visualizer provides visualization services that are specific for K-Means algorithm.
"""
__default_2d_marker_size = 15
__default_3d_marker_size = 70
@staticmethod
def show_clusters(sample, clusters, centers, initial_centers = None, **kwargs):
"""!
@brief Display K-Means clustering results.
@param[in] sample (list): Dataset that was used for clustering.
@param[in] clusters (array_like): Clusters that were allocated by the algorithm.
@param[in] centers (array_like): Centers that were allocated by the algorithm.
@param[in] initial_centers (array_like): Initial centers that were used by the algorithm, if 'None' then initial centers are not displyed.
@param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'figure', 'display', 'offset').
<b>Keyword Args:</b><br>
- figure (figure): If 'None' then new is figure is created, otherwise specified figure is used for visualization.
- display (bool): If 'True' then figure will be shown by the method, otherwise it should be shown manually using matplotlib function 'plt.show()'.
- offset (uint): Specify axes index on the figure where results should be drawn (only if argument 'figure' is specified).
@return (figure) Figure where clusters were drawn.
"""
visualizer = cluster_visualizer()
visualizer.append_clusters(clusters, sample)
offset = kwargs.get('offset', 0)
figure = kwargs.get('figure', None)
display = kwargs.get('display', True)
if figure is None:
figure = visualizer.show(display=False)
else:
visualizer.show(figure=figure, display=False)
kmeans_visualizer.__draw_centers(figure, offset, visualizer, centers, initial_centers)
kmeans_visualizer.__draw_rays(figure, offset, visualizer, sample, clusters, centers)
if display is True:
plt.show()
return figure
@staticmethod
def __draw_rays(figure, offset, visualizer, sample, clusters, centers):
ax = figure.get_axes()[offset]
for index_cluster in range(len(clusters)):
color = visualizer.get_cluster_color(index_cluster, 0)
kmeans_visualizer.__draw_cluster_rays(ax, color, sample, clusters[index_cluster], centers[index_cluster])
@staticmethod
def __draw_cluster_rays(ax, color, sample, cluster, center):
dimension = len(sample[0])
for index_point in cluster:
point = sample[index_point]
if dimension == 1:
ax.plot([point[0], center[0]], [0.0, 0.0], '-', color=color, linewidth=0.5)
elif dimension == 2:
ax.plot([point[0], center[0]], [point[1], center[1]], '-', color=color, linewidth=0.5)
elif dimension == 3:
ax.plot([point[0], center[0]], [point[1], center[1]], [point[2], center[2]], '-', color=color, linewidth=0.5)
@staticmethod
def __draw_center(ax, center, color, marker, alpha):
dimension = len(center)
if dimension == 1:
ax.plot(center[0], 0.0, color=color, alpha=alpha, marker=marker, markersize=kmeans_visualizer.__default_2d_marker_size)
elif dimension == 2:
ax.plot(center[0], center[1], color=color, alpha=alpha, marker=marker, markersize=kmeans_visualizer.__default_2d_marker_size)
elif dimension == 3:
ax.scatter(center[0], center[1], center[2], c=color, alpha=alpha, marker=marker, s=kmeans_visualizer.__default_3d_marker_size)
@staticmethod
def __draw_centers(figure, offset, visualizer, centers, initial_centers):
ax = figure.get_axes()[offset]
for index_center in range(len(centers)):
color = visualizer.get_cluster_color(index_center, 0)
kmeans_visualizer.__draw_center(ax, centers[index_center], color, '*', 1.0)
if initial_centers is not None:
kmeans_visualizer.__draw_center(ax, initial_centers[index_center], color, '*', 0.4)
@staticmethod
def animate_cluster_allocation(data, observer, animation_velocity=500, movie_fps=1, save_movie=None):
"""!
@brief Animates clustering process that is performed by K-Means algorithm.
@param[in] data (list): Dataset that is used for clustering.
@param[in] observer (kmeans_observer): EM observer that was used for collection information about clustering process.
@param[in] animation_velocity (uint): Interval between frames in milliseconds (for run-time animation only).
@param[in] movie_fps (uint): Defines frames per second (for rendering movie only).
@param[in] save_movie (string): If it is specified then animation will be stored to file that is specified in this parameter.
"""
figure = plt.figure()
def init_frame():
return frame_generation(0)
def frame_generation(index_iteration):
figure.clf()
figure.suptitle("K-Means algorithm (iteration: " + str(index_iteration) + ")", fontsize=18, fontweight='bold')
clusters = observer.get_clusters(index_iteration)
centers = observer.get_centers(index_iteration)
kmeans_visualizer.show_clusters(data, clusters, centers, None, figure=figure, display=False)
figure.subplots_adjust(top=0.85)
return [figure.gca()]
iterations = len(observer)
cluster_animation = animation.FuncAnimation(figure, frame_generation, iterations, interval=animation_velocity,
init_func=init_frame, repeat_delay=5000)
if save_movie is not None:
cluster_animation.save(save_movie, writer='ffmpeg', fps=movie_fps, bitrate=3000)
else:
plt.show()
class kmeans:
"""!
@brief Class implements K-Means clustering algorithm.
@details K-Means clustering aims to partition n observations into k clusters in which each observation belongs to
the cluster with the nearest mean, serving as a prototype of the cluster. This results in a partitioning
of the data space into Voronoi cells.
K-Means clustering results depend on initial centers. Algorithm K-Means++ can used for initialization of
initial centers - see module 'pyclustering.cluster.center_initializer'.
CCORE implementation (C/C++ part of the library) of the algorithm performs parallel processing to ensure maximum
performance.
Implementation based on the paper @cite inproceedings::kmeans::1.
@image html kmeans_example_clustering.png "Fig. 1. K-Means clustering results. At the left - 'Simple03.data' sample, at the right - 'Lsun.data' sample."
Example #1 - Clustering using K-Means++ for center initialization:
@code
from pyclustering.cluster.kmeans import kmeans, kmeans_visualizer
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
from pyclustering.samples.definitions import FCPS_SAMPLES
from pyclustering.utils import read_sample
# Load list of points for cluster analysis.
sample = read_sample(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)
# Prepare initial centers using K-Means++ method.
initial_centers = kmeans_plusplus_initializer(sample, 2).initialize()
# Create instance of K-Means algorithm with prepared centers.
kmeans_instance = kmeans(sample, initial_centers)
# Run cluster analysis and obtain results.
kmeans_instance.process()
clusters = kmeans_instance.get_clusters()
final_centers = kmeans_instance.get_centers()
# Visualize obtained results
kmeans_visualizer.show_clusters(sample, clusters, final_centers)
@endcode
Example #2 - Clustering using specific distance metric, for example, Manhattan distance:
@code
# prepare input data and initial centers for cluster analysis using K-Means
# create metric that will be used for clustering
manhattan_metric = distance_metric(type_metric.MANHATTAN)
# create instance of K-Means using specific distance metric:
kmeans_instance = kmeans(sample, initial_centers, metric=manhattan_metric)
# run cluster analysis and obtain results
kmeans_instance.process()
clusters = kmeans_instance.get_clusters()
@endcode
@see center_initializer
"""
def __init__(self, data, initial_centers, tolerance=0.001, ccore=True, **kwargs):
"""!
@brief Constructor of clustering algorithm K-Means.
@details Center initializer can be used for creating initial centers, for example, K-Means++ method.
@param[in] data (array_like): Input data that is presented as array of points (objects), each point should be represented by array_like data structure.
@param[in] initial_centers (array_like): Initial coordinates of centers of clusters that are represented by array_like data structure: [center1, center2, ...].
@param[in] tolerance (double): Stop condition: if maximum value of change of centers of clusters is less than tolerance then algorithm stops processing.
@param[in] ccore (bool): Defines should be CCORE library (C++ pyclustering library) used instead of Python code or not.
@param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'observer', 'metric', 'itermax').
<b>Keyword Args:</b><br>
- observer (kmeans_observer): Observer of the algorithm to collect information about clustering process on each iteration.
- metric (distance_metric): Metric that is used for distance calculation between two points (by default euclidean square distance).
- itermax (uint): Maximum number of iterations that is used for clustering process (by default: 200).
@see center_initializer
"""
self.__pointer_data = numpy.array(data)
self.__clusters = []
self.__centers = numpy.array(initial_centers)
self.__tolerance = tolerance
self.__total_wce = 0.0
self.__observer = kwargs.get('observer', None)
self.__metric = copy.copy(kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN_SQUARE)))
self.__itermax = kwargs.get('itermax', 100)
if self.__metric.get_type() != type_metric.USER_DEFINED:
self.__metric.enable_numpy_usage()
else:
self.__metric.disable_numpy_usage()
self.__ccore = ccore and self.__metric.get_type() != type_metric.USER_DEFINED
if self.__ccore is True:
self.__ccore = ccore_library.workable()
self.__verify_arguments()
def process(self):
"""!
@brief Performs cluster analysis in line with rules of K-Means algorithm.
@return (kmeans) Returns itself (K-Means instance).
@see get_clusters()
@see get_centers()
"""
if len(self.__pointer_data[0]) != len(self.__centers[0]):
raise ValueError("Dimension of the input data and dimension of the initial cluster centers must be equal.")
if self.__ccore is True:
self.__process_by_ccore()
else:
self.__process_by_python()
return self
def __process_by_ccore(self):
"""!
@brief Performs cluster analysis using CCORE (C/C++ part of pyclustering library).
"""
ccore_metric = metric_wrapper.create_instance(self.__metric)
results = wrapper.kmeans(self.__pointer_data, self.__centers, self.__tolerance, self.__itermax,
(self.__observer is not None), ccore_metric.get_pointer())
self.__clusters = results[0]
self.__centers = results[1]
if self.__observer is not None:
self.__observer.set_evolution_clusters(results[2])
self.__observer.set_evolution_centers(results[3])
self.__total_wce = results[4][0]
def __process_by_python(self):
"""!
@brief Performs cluster analysis using python code.
"""
maximum_change = float('inf')
iteration = 0
if self.__observer is not None:
initial_clusters = self.__update_clusters()
self.__observer.notify(initial_clusters, self.__centers.tolist())
while maximum_change > self.__tolerance and iteration < self.__itermax:
self.__clusters = self.__update_clusters()
updated_centers = self.__update_centers() # changes should be calculated before assignment
if self.__observer is not None:
self.__observer.notify(self.__clusters, updated_centers.tolist())
maximum_change = self.__calculate_changes(updated_centers)
self.__centers = updated_centers # assign center after change calculation
iteration += 1
self.__calculate_total_wce()
def predict(self, points):
"""!
@brief Calculates the closest cluster to each point.
@param[in] points (array_like): Points for which closest clusters are calculated.
@return (list) List of closest clusters for each point. Each cluster is denoted by index. Return empty
collection if 'process()' method was not called.
"""
nppoints = numpy.array(points)
if len(self.__clusters) == 0:
return []
differences = numpy.zeros((len(nppoints), len(self.__centers)))
for index_point in range(len(nppoints)):
if self.__metric.get_type() != type_metric.USER_DEFINED:
differences[index_point] = self.__metric(nppoints[index_point], self.__centers)
else:
differences[index_point] = [self.__metric(nppoints[index_point], center) for center in self.__centers]
return numpy.argmin(differences, axis=1)
def get_clusters(self):
"""!
@brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data.
@see process()
@see get_centers()
"""
return self.__clusters
def get_centers(self):
"""!
@brief Returns list of centers of allocated clusters.
@see process()
@see get_clusters()
"""
if isinstance(self.__centers, list):
return self.__centers
return self.__centers.tolist()
def get_total_wce(self):
"""!
@brief Returns sum of metric errors that depends on metric that was used for clustering (by default SSE - Sum of Squared Errors).
@details Sum of metric errors is calculated using distance between point and its center:
\f[error=\sum_{i=0}^{N}distance(x_{i}-center(x_{i}))\f]
@see process()
@see get_clusters()
"""
return self.__total_wce
def get_cluster_encoding(self):
"""!
@brief Returns clustering result representation type that indicate how clusters are encoded.
@return (type_encoding) Clustering result representation.
@see get_clusters()
"""
return type_encoding.CLUSTER_INDEX_LIST_SEPARATION
def __update_clusters(self):
"""!
@brief Calculate distance (in line with specified metric) to each point from the each cluster. Nearest points
are captured by according clusters and as a result clusters are updated.
@return (list) Updated clusters as list of clusters. Each cluster contains indexes of objects from data.
"""
clusters = [[] for _ in range(len(self.__centers))]
dataset_differences = self.__calculate_dataset_difference(len(clusters))
optimum_indexes = numpy.argmin(dataset_differences, axis=0)
for index_point in range(len(optimum_indexes)):
index_cluster = optimum_indexes[index_point]
clusters[index_cluster].append(index_point)
clusters = [cluster for cluster in clusters if len(cluster) > 0]
return clusters
def __update_centers(self):
"""!
@brief Calculate centers of clusters in line with contained objects.
@return (numpy.array) Updated centers.
"""
dimension = self.__pointer_data.shape[1]
centers = numpy.zeros((len(self.__clusters), dimension))
for index in range(len(self.__clusters)):
cluster_points = self.__pointer_data[self.__clusters[index], :]
centers[index] = cluster_points.mean(axis=0)
return numpy.array(centers)
def __calculate_total_wce(self):
"""!
@brief Calculate total within cluster errors that is depend on metric that was chosen for K-Means algorithm.
"""
dataset_differences = self.__calculate_dataset_difference(len(self.__clusters))
self.__total_wce = 0.0
for index_cluster in range(len(self.__clusters)):
for index_point in self.__clusters[index_cluster]:
self.__total_wce += dataset_differences[index_cluster][index_point]
def __calculate_dataset_difference(self, amount_clusters):
"""!
@brief Calculate distance from each point to each cluster center.
"""
dataset_differences = numpy.zeros((amount_clusters, len(self.__pointer_data)))
for index_center in range(amount_clusters):
if self.__metric.get_type() != type_metric.USER_DEFINED:
dataset_differences[index_center] = self.__metric(self.__pointer_data, self.__centers[index_center])
else:
dataset_differences[index_center] = [self.__metric(point, self.__centers[index_center])
for point in self.__pointer_data]
return dataset_differences
def __calculate_changes(self, updated_centers):
"""!
@brief Calculates changes estimation between previous and current iteration using centers for that purpose.
@param[in] updated_centers (array_like): New cluster centers.
@return (float) Maximum changes between centers.
"""
if len(self.__centers) != len(updated_centers):
maximum_change = float('inf')
else:
if self.__metric.get_type() != type_metric.USER_DEFINED:
changes = self.__metric(self.__centers, updated_centers)
else:
changes = [self.__metric(center, updated_center) for center, updated_center in zip(self.__centers, updated_centers)]
maximum_change = numpy.max(changes)
return maximum_change
def __verify_arguments(self):
"""!
@brief Verify input parameters for the algorithm and throw exception in case of incorrectness.
"""
if len(self.__pointer_data) == 0:
raise ValueError("Input data is empty (size: '%d')." % len(self.__pointer_data))
if len(self.__centers) == 0:
raise ValueError("Initial centers are empty (size: '%d')." % len(self.__pointer_data))
if self.__tolerance < 0:
raise ValueError("Tolerance (current value: '%d') should be greater or equal to 0." %
self.__tolerance)
if self.__itermax < 0:
raise ValueError("Maximum iterations (current value: '%d') should be greater or equal to 0." %
self.__tolerance)
|