File: it_kmeans.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (203 lines) | stat: -rwxr-xr-x 11,520 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""!

@brief Integration-tests for K-Means algorithm.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""


import unittest
import numpy

import matplotlib
matplotlib.use('Agg')

from pyclustering.cluster.tests.kmeans_templates import KmeansTestTemplates
from pyclustering.cluster.kmeans import kmeans

from pyclustering.samples.definitions import SIMPLE_SAMPLES

from pyclustering.core.tests import remove_library

from pyclustering.utils import read_sample
from pyclustering.utils.metric import distance_metric, type_metric


class KmeansIntegrationTest(unittest.TestCase):
    def testClusterAllocationSampleSimple1ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True)

    def testClusterOneAllocationSampleSimple1ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[1.0, 2.5]], [10], True)

    def testClusterAllocationSampleSimple1EuclideanByCore(self):
        metric = distance_metric(type_metric.EUCLIDEAN)
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)

    def testClusterAllocationSampleSimple1EuclideanSquareByCore(self):
        metric = distance_metric(type_metric.EUCLIDEAN_SQUARE)
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)

    def testClusterAllocationSampleSimple1ManhattanByCore(self):
        metric = distance_metric(type_metric.MANHATTAN)
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)

    def testClusterAllocationSampleSimple1ChebyshevByCore(self):
        metric = distance_metric(type_metric.CHEBYSHEV)
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)

    def testClusterAllocationSampleSimple1Minkowski01ByCore(self):
        metric = distance_metric(type_metric.MINKOWSKI, degree=2)
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)

    def testClusterAllocationSampleSimple1Minkowski02ByCore(self):
        metric = distance_metric(type_metric.MINKOWSKI, degree=4)
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)

    def testClusterAllocationSampleSimple1UserDefinedByCore(self):
        metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)

    def testClusterAllocationSampleSimple1UserDefinedNumPyByCore(self):
        data = numpy.array(read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1))
        centers = numpy.array([[3.7, 5.5], [6.7, 7.5]])
        metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
        KmeansTestTemplates.templateLengthProcessData(data, centers, [5, 5], True, metric=metric)

    def testClusterAllocationSampleSimple1Canberra(self):
        metric = distance_metric(type_metric.CANBERRA)
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)

    def testClusterAllocationSampleSimple1ChiSquare(self):
        metric = distance_metric(type_metric.CHI_SQUARE)
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)

    def testClusterAllocationSampleSimple2ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.5, 4.8], [6.9, 7], [7.5, 0.5]], [10, 5, 8], True)

    def testClusterOneAllocationSampleSimple2ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[0.5, 0.2]], [23], True)

    def testClusterAllocationSampleSimple2UserDefinedByCore(self):
        metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.5, 4.8], [6.9, 7], [7.5, 0.5]], [10, 5, 8], True, metric=metric)

    def testClusterAllocationSampleSimple2UserDefinedNumPyByCore(self):
        data = numpy.array(read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE2))
        centers = numpy.array([[3.5, 4.8], [6.9, 7], [7.5, 0.5]])
        metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
        KmeansTestTemplates.templateLengthProcessData(data, centers, [10, 5, 8], True, metric=metric)

    def testClusterAllocationSampleSimple3ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]], [10, 10, 10, 30], True)

    def testClusterOneAllocationSampleSimple3ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [[0.2, 0.1]], [60], True)

    def testClusterAllocationSampleSimple4ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, [[1.5, 0.0], [1.5, 2.0], [1.5, 4.0], [1.5, 6.0], [1.5, 8.0]], [15, 15, 15, 15, 15], True)

    def testClusterOneAllocationSampleSimple4ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, [[2.0, 5.0]], [75], True)

    def testClusterAllocationSampleSimple5ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [[0.0, 1.0], [0.0, 0.0], [1.0, 1.0], [1.0, 0.0]], [15, 15, 15, 15], True)

    def testClusterOneAllocationSampleSimple5ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [[0.0, 0.0]], [60], True)

    def testClusterAllocationSampleSimple5Canberra(self):
        metric = distance_metric(type_metric.CANBERRA)
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [[0.0, 1.0], [0.0, 0.0], [1.0, 1.0], [1.0, 0.0]], [30, 30], True, metric=metric)

    def testClusterAllocationSampleSimple5ChiSquare(self):
        metric = distance_metric(type_metric.CHI_SQUARE)
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [[3.4, 2.6], [3.4, -3.2], [-3.4, -3.4], [-3.1, 3.3]], [15, 15, 15, 15], True, metric=metric)

    def testClusterOneDimensionSampleSimple7ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, [[-3.0], [2.0]], [10, 10], True)

    def testClusterOneDimensionSampleSimple8ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, [[-4.0], [3.1], [6.1], [12.0]], [15, 30, 20, 80], True)

    def testWrongNumberOfCentersSimpleSample1ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[2.0, 4.5], [3.3, 6.5], [5.0, 7.8]], None, True)

    def testWrongNumberOfCentersSimpleSample2ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[1.3, 1.5], [5.2, 8.5], [5.0, 7.8], [11.0, -3.0]], None, True)

    def testTheSameData1ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, [ [4.0], [8.0] ], [10, 20], True)

    def testTheSameData2ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, [ [1.0, 1.0], [2.5, 2.5], [4.0, 4.0] ], [5, 5, 5], True)

    def testClusterAllocationOneDimensionDataByCore(self):
        KmeansTestTemplates.templateClusterAllocationOneDimensionData(True)


    def testEncoderProcedureSampleSimple4ByCore(self):
        KmeansTestTemplates.templateEncoderProcedures(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, [[1.5, 0.0], [1.5, 2.0], [1.5, 4.0], [1.5, 6.0], [1.5, 8.0]], 5, True)

    def testCoreInterfaceIntInputData(self):
        kmeans_instance = kmeans([ [1], [2], [3], [20], [21], [22] ], [ [2], [21] ], 0.025, True)
        kmeans_instance.process()
        assert len(kmeans_instance.get_clusters()) == 2


    def testObserveSampleSimple1ByCore(self):
        KmeansTestTemplates.templateCollectEvolution(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.5, 5.6], [6.8, 7.4]], [5, 5], True)

    def testObserveSampleSimple1OneClusterByCore(self):
        KmeansTestTemplates.templateCollectEvolution(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.3, 5.4]], [10], True)

    def testObserveSampleSimple2ByCore(self):
        KmeansTestTemplates.templateCollectEvolution(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.4, 4.9], [6.8, 7.1], [7.6, 0.4]], [10, 5, 8], True)


    def testItermax0ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [], True, itermax=0)

    def testItermax1ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, itermax=1)

    def testItermax10Simple01ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, itermax=10)

    def testItermax10Simple02ByCore(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.5, 4.8], [6.9, 7], [7.5, 0.5]], [10, 5, 8], True, itermax=10)


    def testShowResultsSampleSimple01(self):
        KmeansTestTemplates.templateShowClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.5, 5.6], [6.8, 7.4]], True)

    def testShowResultsSampleSimple02(self):
        KmeansTestTemplates.templateShowClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.4, 4.9], [6.8, 7.1], [7.6, 0.4]], True)

    def testShowResultsOneDimensionalData(self):
        KmeansTestTemplates.templateShowClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, [[-2.0], [3.0], [6.0], [12.0]], True)

    def testShowResultsThreeDimensionalData(self):
        KmeansTestTemplates.templateShowClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, [[1.0, 0.6, 0.8], [4.1, 4.2, 4.3]], True)


    def testAnimateResultsSampleSimple01(self):
        KmeansTestTemplates.templateAnimateClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.5, 5.6], [6.8, 7.4]], True)

    def testAnimateResultsSampleSimple02(self):
        KmeansTestTemplates.templateAnimateClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.4, 4.9], [6.8, 7.1], [7.6, 0.4]], True)

    def testAnimateResultsOneDimensionalData(self):
        KmeansTestTemplates.templateAnimateClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, [[-2.0], [3.0], [6.0], [12.0]], True)

    def testAnimateResultsThreeDimensionalData(self):
        KmeansTestTemplates.templateAnimateClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, [[1.0, 0.6, 0.8], [4.1, 4.2, 4.3]], True)



    @remove_library
    def testProcessingWhenLibraryCoreCorrupted(self):
        KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True)