1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
"""!
@brief Integration-tests for K-Means algorithm.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import unittest
import numpy
import matplotlib
matplotlib.use('Agg')
from pyclustering.cluster.tests.kmeans_templates import KmeansTestTemplates
from pyclustering.cluster.kmeans import kmeans
from pyclustering.samples.definitions import SIMPLE_SAMPLES
from pyclustering.core.tests import remove_library
from pyclustering.utils import read_sample
from pyclustering.utils.metric import distance_metric, type_metric
class KmeansIntegrationTest(unittest.TestCase):
def testClusterAllocationSampleSimple1ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True)
def testClusterOneAllocationSampleSimple1ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[1.0, 2.5]], [10], True)
def testClusterAllocationSampleSimple1EuclideanByCore(self):
metric = distance_metric(type_metric.EUCLIDEAN)
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)
def testClusterAllocationSampleSimple1EuclideanSquareByCore(self):
metric = distance_metric(type_metric.EUCLIDEAN_SQUARE)
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)
def testClusterAllocationSampleSimple1ManhattanByCore(self):
metric = distance_metric(type_metric.MANHATTAN)
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)
def testClusterAllocationSampleSimple1ChebyshevByCore(self):
metric = distance_metric(type_metric.CHEBYSHEV)
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)
def testClusterAllocationSampleSimple1Minkowski01ByCore(self):
metric = distance_metric(type_metric.MINKOWSKI, degree=2)
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)
def testClusterAllocationSampleSimple1Minkowski02ByCore(self):
metric = distance_metric(type_metric.MINKOWSKI, degree=4)
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)
def testClusterAllocationSampleSimple1UserDefinedByCore(self):
metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)
def testClusterAllocationSampleSimple1UserDefinedNumPyByCore(self):
data = numpy.array(read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1))
centers = numpy.array([[3.7, 5.5], [6.7, 7.5]])
metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
KmeansTestTemplates.templateLengthProcessData(data, centers, [5, 5], True, metric=metric)
def testClusterAllocationSampleSimple1Canberra(self):
metric = distance_metric(type_metric.CANBERRA)
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)
def testClusterAllocationSampleSimple1ChiSquare(self):
metric = distance_metric(type_metric.CHI_SQUARE)
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, metric=metric)
def testClusterAllocationSampleSimple2ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.5, 4.8], [6.9, 7], [7.5, 0.5]], [10, 5, 8], True)
def testClusterOneAllocationSampleSimple2ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[0.5, 0.2]], [23], True)
def testClusterAllocationSampleSimple2UserDefinedByCore(self):
metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.5, 4.8], [6.9, 7], [7.5, 0.5]], [10, 5, 8], True, metric=metric)
def testClusterAllocationSampleSimple2UserDefinedNumPyByCore(self):
data = numpy.array(read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE2))
centers = numpy.array([[3.5, 4.8], [6.9, 7], [7.5, 0.5]])
metric = distance_metric(type_metric.USER_DEFINED, func=distance_metric(type_metric.EUCLIDEAN))
KmeansTestTemplates.templateLengthProcessData(data, centers, [10, 5, 8], True, metric=metric)
def testClusterAllocationSampleSimple3ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]], [10, 10, 10, 30], True)
def testClusterOneAllocationSampleSimple3ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [[0.2, 0.1]], [60], True)
def testClusterAllocationSampleSimple4ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, [[1.5, 0.0], [1.5, 2.0], [1.5, 4.0], [1.5, 6.0], [1.5, 8.0]], [15, 15, 15, 15, 15], True)
def testClusterOneAllocationSampleSimple4ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, [[2.0, 5.0]], [75], True)
def testClusterAllocationSampleSimple5ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [[0.0, 1.0], [0.0, 0.0], [1.0, 1.0], [1.0, 0.0]], [15, 15, 15, 15], True)
def testClusterOneAllocationSampleSimple5ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [[0.0, 0.0]], [60], True)
def testClusterAllocationSampleSimple5Canberra(self):
metric = distance_metric(type_metric.CANBERRA)
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [[0.0, 1.0], [0.0, 0.0], [1.0, 1.0], [1.0, 0.0]], [30, 30], True, metric=metric)
def testClusterAllocationSampleSimple5ChiSquare(self):
metric = distance_metric(type_metric.CHI_SQUARE)
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [[3.4, 2.6], [3.4, -3.2], [-3.4, -3.4], [-3.1, 3.3]], [15, 15, 15, 15], True, metric=metric)
def testClusterOneDimensionSampleSimple7ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, [[-3.0], [2.0]], [10, 10], True)
def testClusterOneDimensionSampleSimple8ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, [[-4.0], [3.1], [6.1], [12.0]], [15, 30, 20, 80], True)
def testWrongNumberOfCentersSimpleSample1ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[2.0, 4.5], [3.3, 6.5], [5.0, 7.8]], None, True)
def testWrongNumberOfCentersSimpleSample2ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[1.3, 1.5], [5.2, 8.5], [5.0, 7.8], [11.0, -3.0]], None, True)
def testTheSameData1ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, [ [4.0], [8.0] ], [10, 20], True)
def testTheSameData2ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, [ [1.0, 1.0], [2.5, 2.5], [4.0, 4.0] ], [5, 5, 5], True)
def testClusterAllocationOneDimensionDataByCore(self):
KmeansTestTemplates.templateClusterAllocationOneDimensionData(True)
def testEncoderProcedureSampleSimple4ByCore(self):
KmeansTestTemplates.templateEncoderProcedures(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, [[1.5, 0.0], [1.5, 2.0], [1.5, 4.0], [1.5, 6.0], [1.5, 8.0]], 5, True)
def testCoreInterfaceIntInputData(self):
kmeans_instance = kmeans([ [1], [2], [3], [20], [21], [22] ], [ [2], [21] ], 0.025, True)
kmeans_instance.process()
assert len(kmeans_instance.get_clusters()) == 2
def testObserveSampleSimple1ByCore(self):
KmeansTestTemplates.templateCollectEvolution(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.5, 5.6], [6.8, 7.4]], [5, 5], True)
def testObserveSampleSimple1OneClusterByCore(self):
KmeansTestTemplates.templateCollectEvolution(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.3, 5.4]], [10], True)
def testObserveSampleSimple2ByCore(self):
KmeansTestTemplates.templateCollectEvolution(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.4, 4.9], [6.8, 7.1], [7.6, 0.4]], [10, 5, 8], True)
def testItermax0ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [], True, itermax=0)
def testItermax1ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, itermax=1)
def testItermax10Simple01ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True, itermax=10)
def testItermax10Simple02ByCore(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.5, 4.8], [6.9, 7], [7.5, 0.5]], [10, 5, 8], True, itermax=10)
def testShowResultsSampleSimple01(self):
KmeansTestTemplates.templateShowClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.5, 5.6], [6.8, 7.4]], True)
def testShowResultsSampleSimple02(self):
KmeansTestTemplates.templateShowClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.4, 4.9], [6.8, 7.1], [7.6, 0.4]], True)
def testShowResultsOneDimensionalData(self):
KmeansTestTemplates.templateShowClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, [[-2.0], [3.0], [6.0], [12.0]], True)
def testShowResultsThreeDimensionalData(self):
KmeansTestTemplates.templateShowClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, [[1.0, 0.6, 0.8], [4.1, 4.2, 4.3]], True)
def testAnimateResultsSampleSimple01(self):
KmeansTestTemplates.templateAnimateClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.5, 5.6], [6.8, 7.4]], True)
def testAnimateResultsSampleSimple02(self):
KmeansTestTemplates.templateAnimateClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [[3.4, 4.9], [6.8, 7.1], [7.6, 0.4]], True)
def testAnimateResultsOneDimensionalData(self):
KmeansTestTemplates.templateAnimateClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE8, [[-2.0], [3.0], [6.0], [12.0]], True)
def testAnimateResultsThreeDimensionalData(self):
KmeansTestTemplates.templateAnimateClusteringResultNoFailure(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, [[1.0, 0.6, 0.8], [4.1, 4.2, 4.3]], True)
@remove_library
def testProcessingWhenLibraryCoreCorrupted(self):
KmeansTestTemplates.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [[3.7, 5.5], [6.7, 7.5]], [5, 5], True)
|