1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
"""!
@brief Test templates for K-Means clustering module.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
from pyclustering.tests.assertion import assertion
from pyclustering.cluster.encoder import type_encoding, cluster_encoder
from pyclustering.cluster.kmeans import kmeans, kmeans_observer, kmeans_visualizer
from pyclustering.utils import read_sample
from pyclustering.utils.metric import distance_metric, type_metric
from random import random
import numpy
class KmeansTestTemplates:
@staticmethod
def templateLengthProcessData(data, start_centers, expected_cluster_length, ccore, **kwargs):
if isinstance(data, str):
sample = read_sample(data)
else:
sample = data
metric = kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN_SQUARE))
itermax = kwargs.get('itermax', 200)
kmeans_instance = kmeans(sample, start_centers, 0.001, ccore, metric=metric, itermax=itermax)
kmeans_instance.process()
clusters = kmeans_instance.get_clusters()
centers = kmeans_instance.get_centers()
wce = kmeans_instance.get_total_wce()
if itermax == 0:
assertion.eq(start_centers, centers)
assertion.eq([], clusters)
assertion.eq(0.0, wce)
return
expected_wce = 0.0
for index_cluster in range(len(clusters)):
for index_point in clusters[index_cluster]:
expected_wce += metric(sample[index_point], centers[index_cluster])
assertion.eq(expected_wce, wce)
obtained_cluster_sizes = [len(cluster) for cluster in clusters]
assertion.eq(len(sample), sum(obtained_cluster_sizes))
assertion.eq(len(clusters), len(centers))
for center in centers:
assertion.eq(len(sample[0]), len(center))
if expected_cluster_length is not None:
obtained_cluster_sizes.sort()
expected_cluster_length.sort()
assertion.eq(obtained_cluster_sizes, expected_cluster_length)
@staticmethod
def templatePredict(path_to_file, initial_centers, points, expected_closest_clusters, ccore, **kwargs):
sample = read_sample(path_to_file)
metric = kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN_SQUARE))
itermax = kwargs.get('itermax', 200)
kmeans_instance = kmeans(sample, initial_centers, 0.001, ccore, metric=metric, itermax=itermax)
kmeans_instance.process()
closest_clusters = kmeans_instance.predict(points)
assertion.eq(len(expected_closest_clusters), len(closest_clusters))
assertion.true(numpy.array_equal(numpy.array(expected_closest_clusters), closest_clusters))
@staticmethod
def templateClusterAllocationOneDimensionData(ccore_flag):
input_data = [ [random()] for _ in range(10) ] + [ [random() + 3] for _ in range(10) ] + [ [random() + 5] for _ in range(10) ] + [ [random() + 8] for _ in range(10) ]
kmeans_instance = kmeans(input_data, [ [0.0], [3.0], [5.0], [8.0] ], 0.025, ccore_flag)
kmeans_instance.process()
clusters = kmeans_instance.get_clusters()
assertion.eq(4, len(clusters))
for cluster in clusters:
assertion.eq(10, len(cluster))
@staticmethod
def templateEncoderProcedures(filename, initial_centers, number_clusters, ccore_flag):
sample = read_sample(filename)
kmeans_instance = kmeans(sample, initial_centers, 0.025, ccore_flag)
kmeans_instance.process()
clusters = kmeans_instance.get_clusters()
encoding = kmeans_instance.get_cluster_encoding()
encoder = cluster_encoder(encoding, clusters, sample)
encoder.set_encoding(type_encoding.CLUSTER_INDEX_LABELING)
encoder.set_encoding(type_encoding.CLUSTER_OBJECT_LIST_SEPARATION)
encoder.set_encoding(type_encoding.CLUSTER_INDEX_LIST_SEPARATION)
assertion.eq(number_clusters, len(clusters))
@staticmethod
def templateCollectEvolution(filename, initial_centers, number_clusters, ccore_flag):
sample = read_sample(filename)
observer = kmeans_observer()
kmeans_instance = kmeans(sample, initial_centers, 0.025, ccore_flag, observer=observer)
kmeans_instance.process()
assertion.le(1, len(observer))
for i in range(len(observer)):
assertion.le(1, len(observer.get_centers(i)))
for center in observer.get_centers(i):
assertion.eq(len(sample[0]), len(center))
assertion.le(1, len(observer.get_clusters(i)))
@staticmethod
def templateShowClusteringResultNoFailure(filename, initial_centers, ccore_flag):
sample = read_sample(filename)
kmeans_instance = kmeans(sample, initial_centers, 0.025, ccore_flag)
kmeans_instance.process()
clusters = kmeans_instance.get_clusters()
centers = kmeans_instance.get_centers()
kmeans_visualizer.show_clusters(sample, clusters, centers, initial_centers)
@staticmethod
def templateAnimateClusteringResultNoFailure(filename, initial_centers, ccore_flag):
sample = read_sample(filename)
observer = kmeans_observer()
kmeans_instance = kmeans(sample, initial_centers, 0.025, ccore_flag, observer=observer)
kmeans_instance.process()
kmeans_visualizer.animate_cluster_allocation(sample, observer)
|