1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
"""!
@brief Test templates for K-Medoids clustering module.
@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause
"""
import math
import numpy
from pyclustering.tests.assertion import assertion
from pyclustering.cluster.kmedoids import kmedoids
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
from pyclustering.samples import answer_reader
from pyclustering.utils import read_sample, calculate_distance_matrix
from pyclustering.utils.metric import distance_metric, type_metric
from random import random, randint
class kmedoids_test_template:
@staticmethod
def templateLengthProcessData(path_to_file, initial_medoids, expected_cluster_length, ccore_flag, **kwargs):
kmedoids_test_template.templateLengthProcessWithMetric(path_to_file, initial_medoids, expected_cluster_length, None, ccore_flag, **kwargs)
@staticmethod
def templateLengthProcessWithMetric(path_to_file, initial_medoids, expected_cluster_length, metric, ccore_flag, **kwargs):
sample = read_sample(path_to_file)
data_type = kwargs.get('data_type', 'points')
input_type = kwargs.get('input_type', 'list')
initialize_medoids = kwargs.get('initialize_medoids', None)
itermax = kwargs.get('itermax', 200)
if metric is None:
metric = distance_metric(type_metric.EUCLIDEAN_SQUARE)
input_data = sample
if data_type == 'distance_matrix':
input_data = calculate_distance_matrix(sample)
if input_type == 'numpy':
input_data = numpy.array(input_data)
testing_result = False
testing_attempts = 1
if initialize_medoids is not None: # in case center initializer randomization appears
testing_attempts = 10
for _ in range(testing_attempts):
if initialize_medoids is not None:
initial_medoids = kmeans_plusplus_initializer(sample, initialize_medoids).initialize(return_index=True)
kmedoids_instance = kmedoids(input_data, initial_medoids, 0.001, ccore=ccore_flag, metric=metric, data_type=data_type, itermax=itermax)
kmedoids_instance.process()
clusters = kmedoids_instance.get_clusters()
medoids = kmedoids_instance.get_medoids()
if itermax == 0:
assertion.eq([], clusters)
assertion.eq(medoids, initial_medoids)
return
if len(clusters) != len(medoids):
continue
if len(set(medoids)) != len(medoids):
continue
obtained_cluster_sizes = [len(cluster) for cluster in clusters]
if len(sample) != sum(obtained_cluster_sizes):
continue
for cluster in clusters:
if len(cluster) == 0:
continue
if expected_cluster_length is not None:
obtained_cluster_sizes.sort()
expected_cluster_length.sort()
if obtained_cluster_sizes != expected_cluster_length:
continue
testing_result = True
assertion.true(testing_result)
@staticmethod
def templateClusterAllocationOneDimensionData(ccore_flag):
input_data = [[random()] for _ in range(10)] + [[random() + 3] for _ in range(10)] + [[random() + 5] for _ in range(10)] + [[random() + 8] for _ in range(10)]
kmedoids_instance = kmedoids(input_data, [5, 15, 25, 35], 0.025, ccore_flag)
kmedoids_instance.process()
clusters = kmedoids_instance.get_clusters()
assertion.eq(4, len(clusters))
for cluster in clusters:
assertion.eq(10, len(cluster))
@staticmethod
def templateAllocateRequestedClusterAmount(data, amount_clusters, initial_medoids, ccore_flag):
if initial_medoids is None:
initial_medoids = []
for _ in range(amount_clusters):
index_point = randint(0, len(data) - 1)
while index_point in initial_medoids:
index_point = randint(0, len(data) - 1)
initial_medoids.append(index_point)
kmedoids_instance = kmedoids(data, initial_medoids, 0.025, ccore=ccore_flag)
kmedoids_instance.process()
clusters = kmedoids_instance.get_clusters()
assertion.eq(len(clusters), amount_clusters)
amount_objects = 0
for cluster in clusters:
amount_objects += len(cluster)
assertion.eq(len(data), amount_objects)
@staticmethod
def templateClusterAllocationTheSameObjects(number_objects, number_clusters, ccore_flag=False):
value = random()
input_data = [[value]] * number_objects
initial_medoids = []
step = int(math.floor(number_objects / number_clusters))
for i in range(number_clusters):
initial_medoids.append(i * step)
kmedoids_instance = kmedoids(input_data, initial_medoids, ccore=ccore_flag)
kmedoids_instance.process()
clusters = kmedoids_instance.get_clusters()
medoids = kmedoids_instance.get_medoids()
assertion.eq(len(clusters), len(medoids))
assertion.eq(len(set(medoids)), len(medoids))
object_mark = [False] * number_objects
allocated_number_objects = 0
for cluster in clusters:
for index_object in cluster:
assertion.eq(False, object_mark[index_object]) # one object can be in only one cluster.
object_mark[index_object] = True
allocated_number_objects += 1
assertion.eq(number_objects, allocated_number_objects) # number of allocated objects should be the same.
@staticmethod
def templatePredict(path_to_file, initial_medoids, points, expected_closest_clusters, ccore, **kwargs):
sample = read_sample(path_to_file)
metric = kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN_SQUARE))
itermax = kwargs.get('itermax', 200)
kmedoids_instance = kmedoids(sample, initial_medoids, 0.001, ccore, metric=metric, itermax=itermax)
kmedoids_instance.process()
closest_clusters = kmedoids_instance.predict(points)
assertion.eq(len(expected_closest_clusters), len(closest_clusters))
assertion.true(numpy.array_equal(numpy.array(expected_closest_clusters), closest_clusters))
@staticmethod
def clustering_with_answer(data_file, answer_file, ccore, **kwargs):
data_type = kwargs.get('data_type', 'points')
metric = kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN))
original_data = read_sample(data_file)
data = original_data
if data_type == 'distance_matrix':
data = calculate_distance_matrix(original_data, metric)
reader = answer_reader(answer_file)
amount_medoids = len(reader.get_clusters())
initial_medoids = kmeans_plusplus_initializer(data, amount_medoids, **kwargs).initialize(return_index=True)
kmedoids_instance = kmedoids(data, initial_medoids, 0.001, ccore, **kwargs)
kmedoids_instance.process()
clusters = kmedoids_instance.get_clusters()
medoids = kmedoids_instance.get_medoids()
expected_length_clusters = sorted(reader.get_cluster_lengths())
assertion.eq(len(expected_length_clusters), len(medoids))
assertion.eq(len(data), sum([len(cluster) for cluster in clusters]))
assertion.eq(sum(expected_length_clusters), sum([len(cluster) for cluster in clusters]))
unique_medoids = set()
for medoid in medoids:
assertion.false(medoid in unique_medoids, message="Medoids '%s' is not unique (actual medoids: '%s')" % (str(medoid), str(unique_medoids)))
unique_medoids.add(medoid)
unique_points = set()
for cluster in clusters:
for point in cluster:
assertion.false(point in unique_points, message="Point '%s' is already assigned to one of the clusters." % str(point))
unique_points.add(point)
assertion.eq(expected_length_clusters, sorted([len(cluster) for cluster in clusters]))
expected_clusters = reader.get_clusters()
for actual_cluster in clusters:
cluster_found = False
for expected_cluster in expected_clusters:
if actual_cluster == expected_cluster:
cluster_found = True
assertion.true(cluster_found, message="Actual cluster '%s' is not found among expected." % str(actual_cluster))
|