File: kmedoids_templates.py

package info (click to toggle)
python-pyclustering 0.10.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 11,128 kB
  • sloc: cpp: 38,888; python: 24,311; sh: 384; makefile: 105
file content (228 lines) | stat: -rwxr-xr-x 8,971 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""!

@brief Test templates for K-Medoids clustering module.

@authors Andrei Novikov (pyclustering@yandex.ru)
@date 2014-2020
@copyright BSD-3-Clause

"""


import math
import numpy

from pyclustering.tests.assertion import assertion

from pyclustering.cluster.kmedoids import kmedoids
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer

from pyclustering.samples import answer_reader

from pyclustering.utils import read_sample, calculate_distance_matrix
from pyclustering.utils.metric import distance_metric, type_metric

from random import random, randint


class kmedoids_test_template:
    @staticmethod
    def templateLengthProcessData(path_to_file, initial_medoids, expected_cluster_length, ccore_flag, **kwargs):
        kmedoids_test_template.templateLengthProcessWithMetric(path_to_file, initial_medoids, expected_cluster_length, None, ccore_flag, **kwargs)


    @staticmethod
    def templateLengthProcessWithMetric(path_to_file, initial_medoids, expected_cluster_length, metric, ccore_flag, **kwargs):
        sample = read_sample(path_to_file)
        data_type = kwargs.get('data_type', 'points')
        input_type = kwargs.get('input_type', 'list')
        initialize_medoids = kwargs.get('initialize_medoids', None)
        itermax = kwargs.get('itermax', 200)

        if metric is None:
            metric = distance_metric(type_metric.EUCLIDEAN_SQUARE)

        input_data = sample
        if data_type == 'distance_matrix':
            input_data = calculate_distance_matrix(sample)

            if input_type == 'numpy':
                input_data = numpy.array(input_data)

        testing_result = False
        testing_attempts = 1
        if initialize_medoids is not None:  # in case center initializer randomization appears
            testing_attempts = 10

        for _ in range(testing_attempts):
            if initialize_medoids is not None:
                initial_medoids = kmeans_plusplus_initializer(sample, initialize_medoids).initialize(return_index=True)

            kmedoids_instance = kmedoids(input_data, initial_medoids, 0.001, ccore=ccore_flag, metric=metric, data_type=data_type, itermax=itermax)
            kmedoids_instance.process()

            clusters = kmedoids_instance.get_clusters()
            medoids = kmedoids_instance.get_medoids()

            if itermax == 0:
                assertion.eq([], clusters)
                assertion.eq(medoids, initial_medoids)
                return

            if len(clusters) != len(medoids):
                continue

            if len(set(medoids)) != len(medoids):
                continue

            obtained_cluster_sizes = [len(cluster) for cluster in clusters]
            if len(sample) != sum(obtained_cluster_sizes):
                continue

            for cluster in clusters:
                if len(cluster) == 0:
                    continue

            if expected_cluster_length is not None:
                obtained_cluster_sizes.sort()
                expected_cluster_length.sort()
                if obtained_cluster_sizes != expected_cluster_length:
                    continue

            testing_result = True

        assertion.true(testing_result)


    @staticmethod
    def templateClusterAllocationOneDimensionData(ccore_flag):
        input_data = [[random()] for _ in range(10)] + [[random() + 3] for _ in range(10)] + [[random() + 5] for _ in range(10)] + [[random() + 8] for _ in range(10)]

        kmedoids_instance = kmedoids(input_data, [5, 15, 25, 35], 0.025, ccore_flag)
        kmedoids_instance.process()
        clusters = kmedoids_instance.get_clusters()
         
        assertion.eq(4, len(clusters))
        for cluster in clusters:
            assertion.eq(10, len(cluster))


    @staticmethod
    def templateAllocateRequestedClusterAmount(data, amount_clusters, initial_medoids, ccore_flag):
        if initial_medoids is None:
            initial_medoids = []
            for _ in range(amount_clusters):
                index_point = randint(0, len(data) - 1)
                while index_point in initial_medoids:
                    index_point = randint(0, len(data) - 1)
                
                initial_medoids.append(index_point)
        
        kmedoids_instance = kmedoids(data, initial_medoids, 0.025, ccore=ccore_flag)
        kmedoids_instance.process()
        clusters = kmedoids_instance.get_clusters()
        
        assertion.eq(len(clusters), amount_clusters)
        amount_objects = 0
        for cluster in clusters:
            amount_objects += len(cluster)
        
        assertion.eq(len(data), amount_objects)


    @staticmethod
    def templateClusterAllocationTheSameObjects(number_objects, number_clusters, ccore_flag=False):
        value = random()
        input_data = [[value]] * number_objects
        
        initial_medoids = []
        step = int(math.floor(number_objects / number_clusters))
        for i in range(number_clusters):
            initial_medoids.append(i * step)
        
        kmedoids_instance = kmedoids(input_data, initial_medoids, ccore=ccore_flag)
        kmedoids_instance.process()
        clusters = kmedoids_instance.get_clusters()
        medoids = kmedoids_instance.get_medoids()

        assertion.eq(len(clusters), len(medoids))
        assertion.eq(len(set(medoids)), len(medoids))

        object_mark = [False] * number_objects
        allocated_number_objects = 0

        for cluster in clusters:
            for index_object in cluster: 
                assertion.eq(False, object_mark[index_object])    # one object can be in only one cluster.
                
                object_mark[index_object] = True
                allocated_number_objects += 1
            
        assertion.eq(number_objects, allocated_number_objects)    # number of allocated objects should be the same.


    @staticmethod
    def templatePredict(path_to_file, initial_medoids, points, expected_closest_clusters, ccore, **kwargs):
        sample = read_sample(path_to_file)

        metric = kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN_SQUARE))
        itermax = kwargs.get('itermax', 200)

        kmedoids_instance = kmedoids(sample, initial_medoids, 0.001, ccore, metric=metric, itermax=itermax)
        kmedoids_instance.process()

        closest_clusters = kmedoids_instance.predict(points)
        assertion.eq(len(expected_closest_clusters), len(closest_clusters))
        assertion.true(numpy.array_equal(numpy.array(expected_closest_clusters), closest_clusters))


    @staticmethod
    def clustering_with_answer(data_file, answer_file, ccore, **kwargs):
        data_type = kwargs.get('data_type', 'points')
        metric = kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN))

        original_data = read_sample(data_file)
        data = original_data

        if data_type == 'distance_matrix':
            data = calculate_distance_matrix(original_data, metric)

        reader = answer_reader(answer_file)

        amount_medoids = len(reader.get_clusters())

        initial_medoids = kmeans_plusplus_initializer(data, amount_medoids, **kwargs).initialize(return_index=True)
        kmedoids_instance = kmedoids(data, initial_medoids, 0.001, ccore, **kwargs)

        kmedoids_instance.process()

        clusters = kmedoids_instance.get_clusters()
        medoids = kmedoids_instance.get_medoids()

        expected_length_clusters = sorted(reader.get_cluster_lengths())

        assertion.eq(len(expected_length_clusters), len(medoids))
        assertion.eq(len(data), sum([len(cluster) for cluster in clusters]))
        assertion.eq(sum(expected_length_clusters), sum([len(cluster) for cluster in clusters]))

        unique_medoids = set()
        for medoid in medoids:
            assertion.false(medoid in unique_medoids, message="Medoids '%s' is not unique (actual medoids: '%s')" % (str(medoid), str(unique_medoids)))
            unique_medoids.add(medoid)

        unique_points = set()
        for cluster in clusters:
            for point in cluster:
                assertion.false(point in unique_points, message="Point '%s' is already assigned to one of the clusters." % str(point))
                unique_points.add(point)

        assertion.eq(expected_length_clusters, sorted([len(cluster) for cluster in clusters]))

        expected_clusters = reader.get_clusters()
        for actual_cluster in clusters:
            cluster_found = False
            for expected_cluster in expected_clusters:
                if actual_cluster == expected_cluster:
                    cluster_found = True

            assertion.true(cluster_found, message="Actual cluster '%s' is not found among expected." % str(actual_cluster))